class Doc2VecApproach extends AnnotatorApproach[Doc2VecModel] with HasStorageRef with HasEnableCachingProperties with HasProtectedParams
Trains a Word2Vec model that creates vector representations of words in a text corpus.
The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.
We use Word2Vec implemented in Spark ML. It uses skip-gram model in our implementation and a hierarchical softmax method to train the model. The variable names in the implementation match the original C implementation.
For instantiated/pretrained models, see Doc2VecModel.
Sources :
For the original C implementation, see https://code.google.com/p/word2vec/
For the research paper, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.annotator.{Tokenizer, Doc2VecApproach} import com.johnsnowlabs.nlp.base.DocumentAssembler import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols(Array("document")) .setOutputCol("token") val embeddings = new Doc2VecApproach() .setInputCols("token") .setOutputCol("embeddings") val pipeline = new Pipeline() .setStages(Array( documentAssembler, tokenizer, embeddings )) val path = "src/test/resources/spell/sherlockholmes.txt" val dataset = spark.sparkContext.textFile(path) .toDF("text") val pipelineModel = pipeline.fit(dataset)
- Grouped
- Alphabetic
- By Inheritance
- Doc2VecApproach
- HasProtectedParams
- HasEnableCachingProperties
- HasStorageRef
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- implicit class ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): Doc2VecModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- Doc2VecApproach → AnnotatorApproach
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): Doc2VecApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[Doc2VecModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- def createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
- Definition Classes
- Doc2VecApproach → AnnotatorApproach
- val enableCaching: BooleanParam
Whether to enable caching DataFrames or RDDs during the training
Whether to enable caching DataFrames or RDDs during the training
- Definition Classes
- HasEnableCachingProperties
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- final def fit(dataset: Dataset[_]): Doc2VecModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[Doc2VecModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): Doc2VecModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): Doc2VecModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEnableCaching: Boolean
- Definition Classes
- HasEnableCachingProperties
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxIter: Int
- def getMaxSentenceLength: Int
- def getMinCount: Int
- def getNumPartitions: Int
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getSeed: Int
- def getStepSize: Double
- def getStorageRef: String
- Definition Classes
- HasStorageRef
- def getVectorSize: Int
- def getWindowSize: Int
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input Annotator Types: TOKEN
Input Annotator Types: TOKEN
- Definition Classes
- Doc2VecApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxIter: IntParam
Param for maximum number of iterations (>= 0) (Default:
1) - val maxSentenceLength: IntParam
Sets the maximum length (in words) of each sentence in the input data (Default:
1000).Sets the maximum length (in words) of each sentence in the input data (Default:
1000). Any sentence longer than this threshold will be divided into chunks of up tomaxSentenceLengthsize. - val minCount: IntParam
The minimum number of times a token must appear to be included in the word2vec model's vocabulary.
The minimum number of times a token must appear to be included in the word2vec model's vocabulary. Default: 5
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val numPartitions: IntParam
Number of partitions for sentences of words (Default:
1). - def onTrained(model: Doc2VecModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: String
Output Annotator Types: SENTENCE_EMBEDDINGS
Output Annotator Types: SENTENCE_EMBEDDINGS
- Definition Classes
- Doc2VecApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- val seed: IntParam
Random seed for shuffling the dataset (Default:
44) - def set[T](param: ProtectedParam[T], value: T): Doc2VecApproach.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
- def set[T](feature: StructFeature[T], value: T): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): Doc2VecApproach.this.type
- Definition Classes
- Params
- def setDefault[T](feature: StructFeature[T], value: () => T): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): Doc2VecApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): Doc2VecApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableCaching(value: Boolean): Doc2VecApproach.this.type
- Definition Classes
- HasEnableCachingProperties
- final def setInputCols(value: String*): Doc2VecApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): Doc2VecApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): Doc2VecApproach.this.type
- Definition Classes
- CanBeLazy
- def setMaxIter(value: Int): Doc2VecApproach.this.type
- def setMaxSentenceLength(value: Int): Doc2VecApproach.this.type
- def setMinCount(value: Int): Doc2VecApproach.this.type
- def setNumPartitions(value: Int): Doc2VecApproach.this.type
- final def setOutputCol(value: String): Doc2VecApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setSeed(value: Int): Doc2VecApproach.this.type
- def setStepSize(value: Double): Doc2VecApproach.this.type
- def setStorageRef(value: String): Doc2VecApproach.this.type
- Definition Classes
- HasStorageRef
- def setVectorSize(value: Int): Doc2VecApproach.this.type
- def setWindowSize(value: Int): Doc2VecApproach.this.type
- val stepSize: DoubleParam
Param for Step size to be used for each iteration of optimization (> 0) (Default:
0.025). - val storageRef: Param[String]
Unique identifier for storage (Default:
this.uid)Unique identifier for storage (Default:
this.uid)- Definition Classes
- HasStorageRef
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): Doc2VecModel
- Definition Classes
- Doc2VecApproach → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- Doc2VecApproach → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
- val vectorSize: ProtectedParam[Int]
The dimension of the code that you want to transform from words (Default:
100). - final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val windowSize: IntParam
The window size (context words from [-window, window]) (Default:
5) - def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasProtectedParams
Inherited from HasEnableCachingProperties
Inherited from HasStorageRef
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[Doc2VecModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[Doc2VecModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types