class WordEmbeddings extends AnnotatorApproach[WordEmbeddingsModel] with HasStorage with HasEmbeddingsProperties
Word Embeddings lookup annotator that maps tokens to vectors.
For instantiated/pretrained models, see WordEmbeddingsModel.
A custom token lookup dictionary for embeddings can be set with setStoragePath. Each line of
the provided file needs to have a token, followed by their vector representation, delimited by
a spaces.
... are 0.39658191506190343 0.630968081620067 0.5393722253731201 0.8428180123359783 were 0.7535235923631415 0.9699218875629833 0.10397182122983872 0.11833962569383116 stress 0.0492683418305907 0.9415954572751959 0.47624463167525755 0.16790967216778263 induced 0.1535748762292387 0.33498936903209897 0.9235178224122094 0.1158772920395934 ...
If a token is not found in the dictionary, then the result will be a zero vector of the same dimension. Statistics about the rate of converted tokens, can be retrieved with WordEmbeddingsModel.withCoverageColumn and WordEmbeddingsModel.overallCoverage.
For extended examples of usage, see the Examples and the WordEmbeddingsTestSpec.
Example
In this example, the file random_embeddings_dim4.txt has the form of the content above.
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.WordEmbeddings import com.johnsnowlabs.nlp.util.io.ReadAs import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols(Array("document")) .setOutputCol("token") val embeddings = new WordEmbeddings() .setStoragePath("src/test/resources/random_embeddings_dim4.txt", ReadAs.TEXT) .setStorageRef("glove_4d") .setDimension(4) .setInputCols("document", "token") .setOutputCol("embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) .setCleanAnnotations(false) val pipeline = new Pipeline() .setStages(Array( documentAssembler, tokenizer, embeddings, embeddingsFinisher )) val data = Seq("The patient was diagnosed with diabetes.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(false) +----------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------+ |[0.9439099431037903,0.4707513153553009,0.806300163269043,0.16176554560661316] | |[0.7966810464859009,0.5551124811172485,0.8861005902290344,0.28284206986427307] | |[0.025029370561242104,0.35177749395370483,0.052506182342767715,0.1887107789516449]| |[0.08617766946554184,0.8399239182472229,0.5395117998123169,0.7864698767662048] | |[0.6599600911140442,0.16109347343444824,0.6041093468666077,0.8913561105728149] | |[0.5955275893211365,0.01899011991918087,0.4397728443145752,0.8911281824111938] | |[0.9840458631515503,0.7599489092826843,0.9417727589607239,0.8624503016471863] | +----------------------------------------------------------------------------------+
- See also
SentenceEmbeddings to combine embeddings into a sentence-level representation
Annotators Main Page for a list of transformer based embeddings
- Grouped
- Alphabetic
- By Inheritance
- WordEmbeddings
- HasEmbeddingsProperties
- HasProtectedParams
- HasStorage
- HasCaseSensitiveProperties
- HasStorageOptions
- HasStorageRef
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- implicit class ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): WordEmbeddingsModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val caseSensitive: BooleanParam
Whether to ignore case in index lookups (Default depends on model)
Whether to ignore case in index lookups (Default depends on model)
- Definition Classes
- HasCaseSensitiveProperties
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): WordEmbeddings.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[WordEmbeddingsModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- def createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
- def createWriter(database: Name, connection: RocksDBConnection): StorageWriter[_]
- Attributes
- protected
- Definition Classes
- WordEmbeddings → HasStorage
- val databases: Array[Name]
- Definition Classes
- WordEmbeddings → HasStorage
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
Word Embeddings lookup annotator that maps tokens to vectors
Word Embeddings lookup annotator that maps tokens to vectors
- Definition Classes
- WordEmbeddings → AnnotatorApproach
- val dimension: ProtectedParam[Int]
Number of embedding dimensions (Default depends on model)
Number of embedding dimensions (Default depends on model)
- Definition Classes
- HasEmbeddingsProperties
- val enableInMemoryStorage: BooleanParam
- Definition Classes
- HasStorageOptions
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- final def fit(dataset: Dataset[_]): WordEmbeddingsModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[WordEmbeddingsModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): WordEmbeddingsModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): WordEmbeddingsModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDimension: Int
- Definition Classes
- HasEmbeddingsProperties
- def getEnableInMemoryStorage: Boolean
- Definition Classes
- HasStorageOptions
- def getIncludeStorage: Boolean
- Definition Classes
- HasStorageOptions
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getStoragePath: Option[ExternalResource]
- Definition Classes
- HasStorage
- def getStorageRef: String
- Definition Classes
- HasStorageRef
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val includeStorage: BooleanParam
- Definition Classes
- HasStorageOptions
- def index(fitDataset: Dataset[_], storageSourcePath: Option[String], readAs: Option[util.io.ReadAs.Value], writers: Map[Name, StorageWriter[_]], readOptions: Option[Map[String, String]]): Unit
- Attributes
- protected
- Definition Classes
- WordEmbeddings → HasStorage
- def indexStorage(fitDataset: Dataset[_], resource: Option[ExternalResource]): Unit
- Definition Classes
- HasStorage
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input annotation type : DOCUMENT, TOKEN
Input annotation type : DOCUMENT, TOKEN
- Definition Classes
- WordEmbeddings → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val missingRefMsg: String
Error message
Error message
- Attributes
- protected
- Definition Classes
- WordEmbeddings → HasStorage
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: WordEmbeddingsModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output annotation type : WORD_EMBEDDINGS
Output annotation type : WORD_EMBEDDINGS
- Definition Classes
- WordEmbeddings → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- val readCacheSize: IntParam
Cache size for items retrieved from storage.
Cache size for items retrieved from storage. Increase for performance but higher memory consumption
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](param: ProtectedParam[T], value: T): WordEmbeddings.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
- def set[T](feature: StructFeature[T], value: T): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): WordEmbeddings.this.type
- Definition Classes
- Params
- def setCaseSensitive(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasCaseSensitiveProperties
- def setDefault[T](feature: StructFeature[T], value: () => T): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): WordEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): WordEmbeddings.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDimension(value: Int): WordEmbeddings.this.type
- Definition Classes
- HasEmbeddingsProperties
- def setEnableInMemoryStorage(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasStorageOptions
- def setIncludeStorage(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasStorageOptions
- final def setInputCols(value: String*): WordEmbeddings.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): WordEmbeddings.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- CanBeLazy
- final def setOutputCol(value: String): WordEmbeddings.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setReadCacheSize(value: Int): WordEmbeddings.this.type
Cache size for items retrieved from storage.
Cache size for items retrieved from storage. Increase for performance but higher memory consumption.
- def setStoragePath(path: String, readAs: util.io.ReadAs.Value): WordEmbeddings.this.type
- Definition Classes
- HasStorage
- def setStoragePath(path: String, readAs: String): WordEmbeddings.this.type
- Definition Classes
- HasStorage
- def setStorageRef(value: String): WordEmbeddings.this.type
- Definition Classes
- HasStorageRef
- def setWriteBufferSize(value: Int): WordEmbeddings.this.type
Buffer size limit before dumping to disk storage while writing.
- val storagePath: ExternalResourceParam
Path to the external resource.
Path to the external resource.
- Definition Classes
- HasStorage
- val storageRef: Param[String]
Unique identifier for storage (Default:
this.uid)Unique identifier for storage (Default:
this.uid)- Definition Classes
- HasStorageRef
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): WordEmbeddingsModel
- Definition Classes
- WordEmbeddings → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- WordEmbeddings → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
- Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
- def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
- Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- val writeBufferSize: IntParam
Buffer size limit before dumping to disk storage while writing
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEmbeddingsProperties
Inherited from HasProtectedParams
Inherited from HasStorage
Inherited from HasCaseSensitiveProperties
Inherited from HasStorageOptions
Inherited from HasStorageRef
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[WordEmbeddingsModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[WordEmbeddingsModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types