Packages

class WordEmbeddingsModel extends AnnotatorModel[WordEmbeddingsModel] with HasSimpleAnnotate[WordEmbeddingsModel] with HasEmbeddingsProperties with HasStorageModel with ParamsAndFeaturesWritable with ReadsFromBytes

Word Embeddings lookup annotator that maps tokens to vectors

This is the instantiated model of WordEmbeddings.

Pretrained models can be loaded with pretrained of the companion object:

val embeddings = WordEmbeddingsModel.pretrained()
    .setInputCols("document", "token")
    .setOutputCol("embeddings")

The default model is "glove_100d", if no name is provided. For available pretrained models please see the Models Hub.

There are also two convenient functions to retrieve the embeddings coverage with respect to the transformed dataset:

  • withCoverageColumn(dataset, embeddingsCol, outputCol): Adds a custom column with word coverage stats for the embedded field: (coveredWords, totalWords, coveragePercentage). This creates a new column with statistics for each row.
val wordsCoverage = WordEmbeddingsModel.withCoverageColumn(resultDF, "embeddings", "cov_embeddings")
wordsCoverage.select("text","cov_embeddings").show(false)
+-------------------+--------------+
|text               |cov_embeddings|
+-------------------+--------------+
|This is a sentence.|[5, 5, 1.0]   |
+-------------------+--------------+
  • overallCoverage(dataset, embeddingsCol): Calculates overall word coverage for the whole data in the embedded field. This returns a single coverage object considering all rows in the field.
val wordsOverallCoverage = WordEmbeddingsModel.overallCoverage(wordsCoverage,"embeddings").percentage
1.0

For extended examples of usage, see the Examples and the WordEmbeddingsTestSpec.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.embeddings.WordEmbeddingsModel
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols(Array("document"))
  .setOutputCol("token")

val embeddings = WordEmbeddingsModel.pretrained()
  .setInputCols("document", "token")
  .setOutputCol("embeddings")

val embeddingsFinisher = new EmbeddingsFinisher()
  .setInputCols("embeddings")
  .setOutputCols("finished_embeddings")
  .setOutputAsVector(true)
  .setCleanAnnotations(false)

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    tokenizer,
    embeddings,
    embeddingsFinisher
  ))

val data = Seq("This is a sentence.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[-0.570580005645752,0.44183000922203064,0.7010200023651123,-0.417129993438720...|
|[-0.542639970779419,0.4147599935531616,1.0321999788284302,-0.4024400115013122...|
|[-0.2708599865436554,0.04400600120425224,-0.020260000601410866,-0.17395000159...|
|[0.6191999912261963,0.14650000631809235,-0.08592499792575836,-0.2629800140857...|
|[-0.3397899866104126,0.20940999686717987,0.46347999572753906,-0.6479200124740...|
+--------------------------------------------------------------------------------+
See also

SentenceEmbeddings to combine embeddings into a sentence-level representation

Annotators Main Page for a list of transformer based embeddings

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. WordEmbeddingsModel
  2. ReadsFromBytes
  3. HasStorageModel
  4. HasStorageOptions
  5. HasStorageReader
  6. HasCaseSensitiveProperties
  7. HasStorageRef
  8. HasEmbeddingsProperties
  9. HasProtectedParams
  10. HasSimpleAnnotate
  11. AnnotatorModel
  12. CanBeLazy
  13. RawAnnotator
  14. HasOutputAnnotationCol
  15. HasInputAnnotationCols
  16. HasOutputAnnotatorType
  17. ParamsAndFeaturesWritable
  18. HasFeatures
  19. DefaultParamsWritable
  20. MLWritable
  21. Model
  22. Transformer
  23. PipelineStage
  24. Logging
  25. Params
  26. Serializable
  27. Identifiable
  28. AnyRef
  29. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new WordEmbeddingsModel()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new WordEmbeddingsModel(uid: String)

Type Members

  1. implicit class ProtectedParam[T] extends Param[T]
    Definition Classes
    HasProtectedParams
  2. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  3. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    WordEmbeddingsModelAnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    WordEmbeddingsModelHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Definition Classes
    WordEmbeddingsModelAnnotatorModel
  14. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  15. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  16. final def clear(param: Param[_]): WordEmbeddingsModel.this.type
    Definition Classes
    Params
  17. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
  18. def copy(extra: ParamMap): WordEmbeddingsModel

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  19. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  20. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  21. def createReader(database: Name, connection: RocksDBConnection): WordEmbeddingsReader
    Attributes
    protected
    Definition Classes
    WordEmbeddingsModelHasStorageReader
  22. val databases: Array[Name]
    Definition Classes
    WordEmbeddingsModelHasStorageModel
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. def deserializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    HasStorageModel
  25. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  26. val dimension: ProtectedParam[Int]

    Number of embedding dimensions (Default depends on model)

    Number of embedding dimensions (Default depends on model)

    Definition Classes
    HasEmbeddingsProperties
  27. val enableInMemoryStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  28. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  29. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  30. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  31. def explainParams(): String
    Definition Classes
    Params
  32. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  33. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  34. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  35. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  36. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  37. def fromBytes(source: Array[Byte]): Array[Float]
    Definition Classes
    ReadsFromBytes
  38. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  41. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  42. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  43. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  44. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  45. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getDimension: Int

    Definition Classes
    HasEmbeddingsProperties
  47. def getEnableInMemoryStorage: Boolean
    Definition Classes
    HasStorageOptions
  48. def getIncludeStorage: Boolean
    Definition Classes
    HasStorageOptions
  49. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  50. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  51. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  52. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  54. def getReader[A](database: Name): StorageReader[A]
    Attributes
    protected
    Definition Classes
    HasStorageReader
  55. def getStorageRef: String
    Definition Classes
    HasStorageRef
  56. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  58. def hasParent: Boolean
    Definition Classes
    Model
  59. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  60. val includeStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  61. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  62. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  63. val inputAnnotatorTypes: Array[String]

    Input annotator type : DOCUMENT, TOKEN

    Input annotator type : DOCUMENT, TOKEN

    Definition Classes
    WordEmbeddingsModelHasInputAnnotationCols
  64. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  65. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  66. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  67. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  68. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  69. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  70. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  83. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  84. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  85. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  86. def onWrite(path: String, spark: SparkSession): Unit
    Attributes
    protected
    Definition Classes
    HasStorageModelParamsAndFeaturesWritable
  87. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  88. val outputAnnotatorType: AnnotatorType

    Output annotator type : WORD_EMBEDDINGS

    Output annotator type : WORD_EMBEDDINGS

    Definition Classes
    WordEmbeddingsModelHasOutputAnnotatorType
  89. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  90. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  91. var parent: Estimator[WordEmbeddingsModel]
    Definition Classes
    Model
  92. val readCacheSize: IntParam

    Cache size for items retrieved from storage.

    Cache size for items retrieved from storage. Increase for performance but higher memory consumption

  93. val readers: Map[Name, StorageReader[_]]
    Attributes
    protected
    Definition Classes
    HasStorageReader
    Annotations
    @transient()
  94. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
  95. def saveStorage(path: String, spark: SparkSession, withinStorage: Boolean = false): Unit
    Definition Classes
    HasStorageModel
  96. def serializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    HasStorageModel
  97. def set[T](param: ProtectedParam[T], value: T): WordEmbeddingsModel.this.type

    Sets the value for a protected Param.

    Sets the value for a protected Param.

    If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.

    T

    Type of the parameter

    param

    Protected parameter to set

    value

    Value for the parameter

    returns

    This object

    Definition Classes
    HasProtectedParams
  98. def set[T](feature: StructFeature[T], value: T): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  99. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. def set[T](feature: SetFeature[T], value: Set[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def set[T](feature: ArrayFeature[T], value: Array[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. final def set(paramPair: ParamPair[_]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  103. final def set(param: String, value: Any): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  104. final def set[T](param: Param[T], value: T): WordEmbeddingsModel.this.type
    Definition Classes
    Params
  105. def setCaseSensitive(value: Boolean): WordEmbeddingsModel.this.type

    Definition Classes
    HasCaseSensitiveProperties
  106. def setDefault[T](feature: StructFeature[T], value: () => T): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. def setDefault[T](feature: SetFeature[T], value: () => Set[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  109. def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  110. final def setDefault(paramPairs: ParamPair[_]*): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  111. final def setDefault[T](param: Param[T], value: T): WordEmbeddingsModel.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  112. def setDimension(value: Int): WordEmbeddingsModel.this.type

    Definition Classes
    HasEmbeddingsProperties
  113. def setEnableInMemoryStorage(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageOptions
  114. def setIncludeStorage(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageOptions
  115. final def setInputCols(value: String*): WordEmbeddingsModel.this.type
    Definition Classes
    HasInputAnnotationCols
  116. def setInputCols(value: Array[String]): WordEmbeddingsModel.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  117. def setLazyAnnotator(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    CanBeLazy
  118. final def setOutputCol(value: String): WordEmbeddingsModel.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  119. def setParent(parent: Estimator[WordEmbeddingsModel]): WordEmbeddingsModel
    Definition Classes
    Model
  120. def setReadCacheSize(value: Int): WordEmbeddingsModel.this.type

    Set cache size for items retrieved from storage.

    Set cache size for items retrieved from storage. Increase for performance but higher memory consumption

  121. def setStorageRef(value: String): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageRef
  122. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  123. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  124. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  125. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  126. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since("2.0.0")
  127. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @varargs() @Since("2.0.0")
  128. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  129. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  130. val uid: String
    Definition Classes
    WordEmbeddingsModel → Identifiable
  131. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  132. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  133. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  134. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  135. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  136. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  137. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  138. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  139. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

    (Since version 9)

Inherited from ReadsFromBytes

Inherited from HasStorageModel

Inherited from HasStorageOptions

Inherited from HasStorageReader

Inherited from HasStorageRef

Inherited from HasProtectedParams

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[WordEmbeddingsModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters