org.apache.commons.math.random
Class RandomDataImpl

java.lang.Object
  extended by org.apache.commons.math.random.RandomDataImpl
All Implemented Interfaces:
Serializable, RandomData

public class RandomDataImpl
extends Object
implements RandomData, Serializable

Implements the RandomData interface using a RandomGenerator instance to generate non-secure data and a SecureRandom instance to provide data for the nextSecureXxx methods. If no RandomGenerator is provided in the constructor, the default is to use a generator based on Random. To plug in a different implementation, either implement RandomGenerator directly or extend AbstractRandomGenerator.

Supports reseeding the underlying pseudo-random number generator (PRNG). The SecurityProvider and Algorithm used by the SecureRandom instance can also be reset.

For details on the default PRNGs, see Random and SecureRandom.

Usage Notes:

Version:
$Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
See Also:
Serialized Form

Constructor Summary
RandomDataImpl()
          Construct a RandomDataImpl.
RandomDataImpl(RandomGenerator rand)
          Construct a RandomDataImpl using the supplied RandomGenerator as the source of (non-secure) random data.
 
Method Summary
 double nextBeta(double alpha, double beta)
          Generates a random value from the Beta Distribution.
 int nextBinomial(int numberOfTrials, double probabilityOfSuccess)
          Generates a random value from the Binomial Distribution.
 double nextCauchy(double median, double scale)
          Generates a random value from the Cauchy Distribution.
 double nextChiSquare(double df)
          Generates a random value from the ChiSquare Distribution.
 double nextExponential(double mean)
          Returns a random value from an Exponential distribution with the given mean.
 double nextF(double numeratorDf, double denominatorDf)
          Generates a random value from the F Distribution.
 double nextGamma(double shape, double scale)
          Generates a random value from the Gamma Distribution.
 double nextGaussian(double mu, double sigma)
          Generate a random value from a Normal (a.k.a.
 String nextHexString(int len)
          Generates a random string of hex characters of length len.
 int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
          Generates a random value from the Hypergeometric Distribution.
 int nextInt(int lower, int upper)
          Generate a random int value uniformly distributed between lower and upper, inclusive.
 double nextInversionDeviate(ContinuousDistribution distribution)
          Generate a random deviate from the given distribution using the inversion method.
 int nextInversionDeviate(IntegerDistribution distribution)
          Generate a random deviate from the given distribution using the inversion method.
 long nextLong(long lower, long upper)
          Generate a random long value uniformly distributed between lower and upper, inclusive.
 int nextPascal(int r, double p)
          Generates a random value from the Pascal Distribution.
 int[] nextPermutation(int n, int k)
          Generates an integer array of length k whose entries are selected randomly, without repetition, from the integers 0 through n-1 (inclusive).
 long nextPoisson(double mean)
          Generates a random value from the Poisson distribution with the given mean.
 Object[] nextSample(Collection<?> c, int k)
          Uses a 2-cycle permutation shuffle to generate a random permutation.
 String nextSecureHexString(int len)
          Generates a random string of hex characters from a secure random sequence.
 int nextSecureInt(int lower, int upper)
          Generate a random int value uniformly distributed between lower and upper, inclusive.
 long nextSecureLong(long lower, long upper)
          Generate a random long value uniformly distributed between lower and upper, inclusive.
 double nextT(double df)
          Generates a random value from the T Distribution.
 double nextUniform(double lower, double upper)
          Generates a uniformly distributed random value from the open interval (lower,upper) (i.e., endpoints excluded).
 double nextWeibull(double shape, double scale)
          Generates a random value from the Weibull Distribution.
 int nextZipf(int numberOfElements, double exponent)
          Generates a random value from the Zipf Distribution.
 void reSeed()
          Reseeds the random number generator with the current time in milliseconds.
 void reSeed(long seed)
          Reseeds the random number generator with the supplied seed.
 void reSeedSecure()
          Reseeds the secure random number generator with the current time in milliseconds.
 void reSeedSecure(long seed)
          Reseeds the secure random number generator with the supplied seed.
 void setSecureAlgorithm(String algorithm, String provider)
          Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

RandomDataImpl

public RandomDataImpl()
Construct a RandomDataImpl.


RandomDataImpl

public RandomDataImpl(RandomGenerator rand)
Construct a RandomDataImpl using the supplied RandomGenerator as the source of (non-secure) random data.

Parameters:
rand - the source of (non-secure) random data
Since:
1.1
Method Detail

nextHexString

public String nextHexString(int len)
Generates a random string of hex characters of length len.

The generated string will be random, but not cryptographically secure. To generate cryptographically secure strings, use nextSecureHexString

Preconditions:

Algorithm Description: hex strings are generated using a 2-step process.

  1. len/2+1 binary bytes are generated using the underlying Random
  2. Each binary byte is translated into 2 hex digits

Specified by:
nextHexString in interface RandomData
Parameters:
len - the desired string length.
Returns:
the random string.
Throws:
NotStrictlyPositiveException - if len <= 0.

nextInt

public int nextInt(int lower,
                   int upper)
Generate a random int value uniformly distributed between lower and upper, inclusive.

Specified by:
nextInt in interface RandomData
Parameters:
lower - the lower bound.
upper - the upper bound.
Returns:
the random integer.
Throws:
NumberIsTooLargeException - if lower >= upper.

nextLong

public long nextLong(long lower,
                     long upper)
Generate a random long value uniformly distributed between lower and upper, inclusive.

Specified by:
nextLong in interface RandomData
Parameters:
lower - the lower bound.
upper - the upper bound.
Returns:
the random integer.
Throws:
NumberIsTooLargeException - if lower >= upper.

nextSecureHexString

public String nextSecureHexString(int len)
Generates a random string of hex characters from a secure random sequence.

If cryptographic security is not required, use nextHexString().

Preconditions:

Algorithm Description: hex strings are generated in 40-byte segments using a 3-step process.

  1. 20 random bytes are generated using the underlying SecureRandom.
  2. SHA-1 hash is applied to yield a 20-byte binary digest.
  3. Each byte of the binary digest is converted to 2 hex digits.

Specified by:
nextSecureHexString in interface RandomData
Parameters:
len - the length of the generated string
Returns:
the random string
Throws:
NotStrictlyPositiveException - if len <= 0.

nextSecureInt

public int nextSecureInt(int lower,
                         int upper)
Generate a random int value uniformly distributed between lower and upper, inclusive. This algorithm uses a secure random number generator.

Specified by:
nextSecureInt in interface RandomData
Parameters:
lower - the lower bound.
upper - the upper bound.
Returns:
the random integer.
Throws:
NumberIsTooLargeException - if lower >= upper.

nextSecureLong

public long nextSecureLong(long lower,
                           long upper)
Generate a random long value uniformly distributed between lower and upper, inclusive. This algorithm uses a secure random number generator.

Specified by:
nextSecureLong in interface RandomData
Parameters:
lower - the lower bound.
upper - the upper bound.
Returns:
the random integer.
Throws:
NumberIsTooLargeException - if lower >= upper.

nextPoisson

public long nextPoisson(double mean)
Generates a random value from the Poisson distribution with the given mean.

Definition: Poisson Distribution

Preconditions:

Algorithm Description:

Specified by:
nextPoisson in interface RandomData
Parameters:
mean - mean of the Poisson distribution.
Returns:
the random Poisson value.
Throws:
NotStrictlyPositiveException - if mean <= 0.

nextGaussian

public double nextGaussian(double mu,
                           double sigma)
Generate a random value from a Normal (a.k.a. Gaussian) distribution with the given mean, mu and the given standard deviation, sigma.

Specified by:
nextGaussian in interface RandomData
Parameters:
mu - the mean of the distribution
sigma - the standard deviation of the distribution
Returns:
the random Normal value
Throws:
NotStrictlyPositiveException - if sigma <= 0.

nextExponential

public double nextExponential(double mean)
Returns a random value from an Exponential distribution with the given mean.

Algorithm Description: Uses the Inversion Method to generate exponentially distributed random values from uniform deviates.

Specified by:
nextExponential in interface RandomData
Parameters:
mean - the mean of the distribution
Returns:
the random Exponential value
Throws:
NotStrictlyPositiveException - if mean <= 0.

nextUniform

public double nextUniform(double lower,
                          double upper)
Generates a uniformly distributed random value from the open interval (lower,upper) (i.e., endpoints excluded).

Definition: Uniform Distribution lower and upper - lower are the location and scale parameters, respectively.

Preconditions:

Algorithm Description: scales the output of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval (both endpoints excluded).

Specified by:
nextUniform in interface RandomData
Parameters:
lower - the lower bound.
upper - the upper bound.
Returns:
a uniformly distributed random value from the interval (lower, upper)
Throws:
NumberIsTooLargeException - if lower >= upper.

nextBeta

public double nextBeta(double alpha,
                       double beta)
                throws MathException
Generates a random value from the Beta Distribution. This implementation uses inversion to generate random values.

Parameters:
alpha - first distribution shape parameter
beta - second distribution shape parameter
Returns:
random value sampled from the beta(alpha, beta) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextBinomial

public int nextBinomial(int numberOfTrials,
                        double probabilityOfSuccess)
                 throws MathException
Generates a random value from the Binomial Distribution. This implementation uses inversion to generate random values.

Parameters:
numberOfTrials - number of trials of the Binomial distribution
probabilityOfSuccess - probability of success of the Binomial distribution
Returns:
random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextCauchy

public double nextCauchy(double median,
                         double scale)
                  throws MathException
Generates a random value from the Cauchy Distribution. This implementation uses inversion to generate random values.

Parameters:
median - the median of the Cauchy distribution
scale - the scale parameter of the Cauchy distribution
Returns:
random value sampled from the Cauchy(median, scale) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextChiSquare

public double nextChiSquare(double df)
                     throws MathException
Generates a random value from the ChiSquare Distribution. This implementation uses inversion to generate random values.

Parameters:
df - the degrees of freedom of the ChiSquare distribution
Returns:
random value sampled from the ChiSquare(df) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextF

public double nextF(double numeratorDf,
                    double denominatorDf)
             throws MathException
Generates a random value from the F Distribution. This implementation uses inversion to generate random values.

Parameters:
numeratorDf - the numerator degrees of freedom of the F distribution
denominatorDf - the denominator degrees of freedom of the F distribution
Returns:
random value sampled from the F(numeratorDf, denominatorDf) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextGamma

public double nextGamma(double shape,
                        double scale)
                 throws MathException
Generates a random value from the Gamma Distribution. This implementation uses inversion to generate random values.

Parameters:
shape - the median of the Gamma distribution
scale - the scale parameter of the Gamma distribution
Returns:
random value sampled from the Gamma(shape, scale) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextHypergeometric

public int nextHypergeometric(int populationSize,
                              int numberOfSuccesses,
                              int sampleSize)
                       throws MathException
Generates a random value from the Hypergeometric Distribution. This implementation uses inversion to generate random values.

Parameters:
populationSize - the population size of the Hypergeometric distribution
numberOfSuccesses - number of successes in the population of the Hypergeometric distribution
sampleSize - the sample size of the Hypergeometric distribution
Returns:
random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextPascal

public int nextPascal(int r,
                      double p)
               throws MathException
Generates a random value from the Pascal Distribution. This implementation uses inversion to generate random values.

Parameters:
r - the number of successes of the Pascal distribution
p - the probability of success of the Pascal distribution
Returns:
random value sampled from the Pascal(r, p) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextT

public double nextT(double df)
             throws MathException
Generates a random value from the T Distribution. This implementation uses inversion to generate random values.

Parameters:
df - the degrees of freedom of the T distribution
Returns:
random value from the T(df) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextWeibull

public double nextWeibull(double shape,
                          double scale)
                   throws MathException
Generates a random value from the Weibull Distribution. This implementation uses inversion to generate random values.

Parameters:
shape - the shape parameter of the Weibull distribution
scale - the scale parameter of the Weibull distribution
Returns:
random value sampled from the Weibull(shape, size) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

nextZipf

public int nextZipf(int numberOfElements,
                    double exponent)
             throws MathException
Generates a random value from the Zipf Distribution. This implementation uses inversion to generate random values.

Parameters:
numberOfElements - the number of elements of the ZipfDistribution
exponent - the exponent of the ZipfDistribution
Returns:
random value sampled from the Zipf(numberOfElements, exponent) distribution
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

reSeed

public void reSeed(long seed)
Reseeds the random number generator with the supplied seed.

Will create and initialize if null.

Parameters:
seed - the seed value to use

reSeedSecure

public void reSeedSecure()
Reseeds the secure random number generator with the current time in milliseconds.

Will create and initialize if null.


reSeedSecure

public void reSeedSecure(long seed)
Reseeds the secure random number generator with the supplied seed.

Will create and initialize if null.

Parameters:
seed - the seed value to use

reSeed

public void reSeed()
Reseeds the random number generator with the current time in milliseconds.


setSecureAlgorithm

public void setSecureAlgorithm(String algorithm,
                               String provider)
                        throws NoSuchAlgorithmException,
                               NoSuchProviderException
Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API. The Security Provider API is defined in Java Cryptography Architecture API Specification & Reference.

USAGE NOTE: This method carries significant overhead and may take several seconds to execute.

Parameters:
algorithm - the name of the PRNG algorithm
provider - the name of the provider
Throws:
NoSuchAlgorithmException - if the specified algorithm is not available
NoSuchProviderException - if the specified provider is not installed

nextPermutation

public int[] nextPermutation(int n,
                             int k)
Generates an integer array of length k whose entries are selected randomly, without repetition, from the integers 0 through n-1 (inclusive).

Generated arrays represent permutations of n taken k at a time.

Preconditions:

If the preconditions are not met, an IllegalArgumentException is thrown.

Uses a 2-cycle permutation shuffle. The shuffling process is described here.

Specified by:
nextPermutation in interface RandomData
Parameters:
n - domain of the permutation (must be positive)
k - size of the permutation (must satisfy 0 < k <= n).
Returns:
the random permutation as an int array
Throws:
NumberIsTooLargeException - if k > n.
NotStrictlyPositiveException - if k <= 0.

nextSample

public Object[] nextSample(Collection<?> c,
                           int k)
Uses a 2-cycle permutation shuffle to generate a random permutation. Algorithm Description: Uses a 2-cycle permutation shuffle to generate a random permutation of c.size() and then returns the elements whose indexes correspond to the elements of the generated permutation. This technique is described, and proven to generate random samples, here

Specified by:
nextSample in interface RandomData
Parameters:
c - Collection to sample from.
k - sample size.
Returns:
the random sample.
Throws:
NumberIsTooLargeException - if k > c.size().
NotStrictlyPositiveException - if k <= 0.

nextInversionDeviate

public double nextInversionDeviate(ContinuousDistribution distribution)
                            throws MathException
Generate a random deviate from the given distribution using the inversion method.

Parameters:
distribution - Continuous distribution to generate a random value from
Returns:
a random value sampled from the given distribution
Throws:
MathException - if an error occurs computing the inverse cumulative distribution function
Since:
2.2

nextInversionDeviate

public int nextInversionDeviate(IntegerDistribution distribution)
                         throws MathException
Generate a random deviate from the given distribution using the inversion method.

Parameters:
distribution - Integer distribution to generate a random value from
Returns:
a random value sampled from the given distribution
Throws:
MathException - if an error occurs computing the inverse cumulative distribution function
Since:
2.2


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.