Class/Object

com.intel.analytics.bigdl.python.api

PythonBigDL

Related Docs: object PythonBigDL | package api

Permalink

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Permalink
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def createAbs(): Abs[T]

    Permalink
  8. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Permalink
  9. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Permalink
  10. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Permalink
  11. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Permalink
  12. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Permalink
  13. def createAdd(inputSize: Int): Add[T]

    Permalink
  14. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Permalink
  15. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Permalink
  16. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Permalink
  17. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Permalink
  18. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Permalink
  19. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Permalink
  20. def createBilinearFiller(): BilinearFiller.type

    Permalink
  21. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Permalink
  22. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Permalink
  23. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Permalink
  24. def createCAddTable(inplace: Boolean = false): CAddTable[T]

    Permalink
  25. def createCDivTable(): CDivTable[T]

    Permalink
  26. def createCMaxTable(): CMaxTable[T]

    Permalink
  27. def createCMinTable(): CMinTable[T]

    Permalink
  28. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Permalink
  29. def createCMulTable(): CMulTable[T]

    Permalink
  30. def createCSubTable(): CSubTable[T]

    Permalink
  31. def createClamp(min: Int, max: Int): Clamp[T]

    Permalink
  32. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true): ClassNLLCriterion[T]

    Permalink
  33. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Permalink
  34. def createConcat(dimension: Int): Concat[T]

    Permalink
  35. def createConcatTable(): ConcatTable[T]

    Permalink
  36. def createConstInitMethod(value: Double): ConstInitMethod

    Permalink
  37. def createContiguous(): Contiguous[T]

    Permalink
  38. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Permalink
  39. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Permalink
  40. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Permalink
  41. def createCosineDistance(): CosineDistance[T]

    Permalink
  42. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Permalink
  43. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Permalink
  44. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Permalink
  45. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Permalink
  46. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  47. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Permalink
  48. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  49. def createDefault(): Default

    Permalink
  50. def createDenseToSparse(): DenseToSparse[T]

    Permalink
  51. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Permalink
  52. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Permalink
  53. def createDotProduct(): DotProduct[T]

    Permalink
  54. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Permalink
  55. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Permalink
  56. def createEcho(): Echo[T]

    Permalink
  57. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Permalink
  58. def createEveryEpoch(): Trigger

    Permalink
  59. def createExp(): Exp[T]

    Permalink
  60. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Permalink
  61. def createFlattenTable(): FlattenTable[T]

    Permalink
  62. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Permalink
  63. def createGaussianCriterion(): GaussianCriterion[T]

    Permalink
  64. def createGaussianSampler(): GaussianSampler[T]

    Permalink
  65. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Permalink
  66. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Permalink
  67. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Permalink
  68. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Permalink
  69. def createIdentity(): Identity[T]

    Permalink
  70. def createIndex(dimension: Int): Index[T]

    Permalink
  71. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Permalink
  72. def createInput(): ModuleNode[T]

    Permalink
  73. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Permalink
  74. def createKLDCriterion(): KLDCriterion[T]

    Permalink
  75. def createL1Cost(): L1Cost[T]

    Permalink
  76. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Permalink
  77. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Permalink
  78. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Permalink
  79. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Permalink
  80. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Permalink
  81. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Permalink
  82. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Permalink
  83. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Permalink
  84. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Permalink
  85. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Permalink
  86. def createLog(): Log[T]

    Permalink
  87. def createLogSigmoid(): LogSigmoid[T]

    Permalink
  88. def createLogSoftMax(): LogSoftMax[T]

    Permalink
  89. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Permalink
  90. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Permalink
  91. def createMAE(): ValidationMethod[T]

    Permalink
  92. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Permalink
  93. def createMSECriterion: MSECriterion[T]

    Permalink
  94. def createMV(trans: Boolean = false): MV[T]

    Permalink
  95. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Permalink
  96. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginCriterion[T]

    Permalink
  97. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Permalink
  98. def createMaskedSelect(): MaskedSelect[T]

    Permalink
  99. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Permalink
  100. def createMaxEpoch(max: Int): Trigger

    Permalink
  101. def createMaxIteration(max: Int): Trigger

    Permalink
  102. def createMaxScore(max: Float): Trigger

    Permalink
  103. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T, T]

    Permalink
  104. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Permalink
  105. def createMinLoss(min: Float): Trigger

    Permalink
  106. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Permalink
  107. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Permalink
  108. def createMul(): Mul[T]

    Permalink
  109. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Permalink
  110. def createMultiCriterion(): MultiCriterion[T]

    Permalink
  111. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Permalink
  112. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Permalink
  113. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Permalink
  114. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Permalink
  115. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Permalink
  116. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Permalink
  117. def createNegative(inplace: Boolean): Negative[T]

    Permalink
  118. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Permalink
  119. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Permalink
  120. def createOnes(): Ones.type

    Permalink
  121. def createOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: OptimMethod[T], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  122. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Permalink
  123. def createPack(dimension: Int): Pack[T]

    Permalink
  124. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Permalink
  125. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Permalink
  126. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Permalink
  127. def createParallelTable(): ParallelTable[T]

    Permalink
  128. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Permalink
  129. def createPoly(power: Double, maxIteration: Int): Poly

    Permalink
  130. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Permalink
  131. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Permalink
  132. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Permalink
  133. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Permalink
  134. def createRandomUniform(): InitializationMethod

    Permalink
  135. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Permalink
  136. def createReLU(ip: Boolean = false): ReLU[T]

    Permalink
  137. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Permalink
  138. def createRecurrent(): Recurrent[T]

    Permalink
  139. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Permalink
  140. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Permalink
  141. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Permalink
  142. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean): ResizeBilinear[T]

    Permalink
  143. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Permalink
  144. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Permalink
  145. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Permalink
  146. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Permalink
  147. def createScale(size: List[Int]): Scale[T]

    Permalink
  148. def createSelect(dimension: Int, index: Int): Select[T]

    Permalink
  149. def createSelectTable(dimension: Int): SelectTable[T]

    Permalink
  150. def createSequential(): Sequential[T]

    Permalink
  151. def createSeveralIteration(interval: Int): Trigger

    Permalink
  152. def createSigmoid(): Sigmoid[T]

    Permalink
  153. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Permalink
  154. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Permalink
  155. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Permalink
  156. def createSoftMax(): SoftMax[T]

    Permalink
  157. def createSoftMin(): SoftMin[T]

    Permalink
  158. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Permalink
  159. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Permalink
  160. def createSoftSign(): SoftSign[T]

    Permalink
  161. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Permalink
  162. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Permalink
  163. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Permalink
  164. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Permalink
  165. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SpatialBatchNormalization[T]

    Permalink
  166. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Permalink
  167. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Permalink
  168. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Permalink
  169. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0): SpatialCrossMapLRN[T]

    Permalink
  170. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Permalink
  171. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Permalink
  172. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Permalink
  173. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Permalink
  174. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Permalink
  175. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Permalink
  176. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Permalink
  177. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Permalink
  178. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Permalink
  179. def createSqrt(): Sqrt[T]

    Permalink
  180. def createSquare(): Square[T]

    Permalink
  181. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Permalink
  182. def createStep(stepSize: Int, gamma: Double): Step

    Permalink
  183. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T, T]

    Permalink
  184. def createTanh(): Tanh[T]

    Permalink
  185. def createTanhShrink(): TanhShrink[T]

    Permalink
  186. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Permalink
  187. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Permalink
  188. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Permalink
  189. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Permalink
  190. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

    Permalink
  191. def createTop1Accuracy(): ValidationMethod[T]

    Permalink
  192. def createTop5Accuracy(): ValidationMethod[T]

    Permalink
  193. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Permalink
  194. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Permalink
  195. def createTreeNNAccuracy(): ValidationMethod[T]

    Permalink
  196. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Permalink
  197. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Permalink
  198. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Permalink
  199. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Permalink
  200. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Permalink
  201. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Permalink
  202. def createXavier(): Xavier.type

    Permalink
  203. def createZeros(): Zeros.type

    Permalink
  204. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Permalink
  205. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Permalink
  206. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Permalink
  207. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Permalink
  208. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  209. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  210. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Permalink
  211. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  212. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Permalink
  213. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Permalink
  214. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  215. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  216. def getHiddenStates(rec: Recurrent[T]): List[JTensor]

    Permalink
  217. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Permalink
  218. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  219. def initEngine(): Unit

    Permalink
  220. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  221. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Permalink
  222. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  223. def loadBigDLModule(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  224. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
  225. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Permalink
  226. def loadOptimMethod(path: String): OptimMethod[T]

    Permalink
  227. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String): AbstractModule[Activity, Activity, T]

    Permalink
  228. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  229. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Permalink
  230. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
  231. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Permalink
  232. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Permalink
  233. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Permalink
  234. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[JTensor]

    Permalink
  235. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
  236. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  237. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  238. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  239. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Permalink
  240. def redirectSparkLogs(logPath: String): Unit

    Permalink
  241. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
  242. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Permalink
  243. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Permalink
  244. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Permalink
  245. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Permalink
  246. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Permalink

    Save tensor dictionary to a Java hashmap object file

  247. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Permalink
  248. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Permalink
  249. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Permalink
  250. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Permalink
  251. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Permalink
  252. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  253. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  254. def setHiddenStates(rec: Recurrent[T], hiddenStates: List[JTensor], isTable: Boolean): Unit

    Permalink
  255. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Permalink
  256. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Permalink
  257. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Permalink
  258. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Permalink
  259. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Permalink
  260. def setModelSeed(seed: Long): Unit

    Permalink
  261. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Permalink
  262. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Permalink
  263. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Permalink
  264. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  265. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Permalink
  266. def showBigDlInfoLogs(): Unit

    Permalink
  267. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Permalink
  268. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Permalink
  269. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  270. def testSample(sample: Sample): Sample

    Permalink
  271. def testTensor(jTensor: JTensor): JTensor

    Permalink
  272. def toJTensor(tensor: Tensor[T]): JTensor

    Permalink
  273. def toPySample(sample: dataset.Sample[T]): Sample

    Permalink
  274. def toSample(record: Sample): dataset.Sample[T]

    Permalink
  275. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  276. def toTensor(jTensor: JTensor): Tensor[T]

    Permalink
  277. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Permalink
  278. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  279. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Permalink
  280. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Permalink
  281. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  282. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  283. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped