Modifier and Type | Class and Description |
---|---|
class |
EarlyStoppingConfiguration<T extends Model> |
static class |
EarlyStoppingConfiguration.Builder<T extends Model> |
interface |
EarlyStoppingModelSaver<T extends Model> |
class |
EarlyStoppingResult<T extends Model> |
Modifier and Type | Interface and Description |
---|---|
interface |
EarlyStoppingListener<T extends Model> |
Modifier and Type | Class and Description |
---|---|
class |
InMemoryModelSaver<T extends Model> |
Modifier and Type | Interface and Description |
---|---|
interface |
ScoreCalculator<T extends Model> |
Modifier and Type | Method and Description |
---|---|
protected INDArray[] |
AutoencoderScoreCalculator.output(Model network,
INDArray[] input,
INDArray[] fMask,
INDArray[] lMask) |
protected INDArray[] |
DataSetLossCalculator.output(Model network,
INDArray[] input,
INDArray[] fMask,
INDArray[] lMask) |
protected INDArray[] |
VAEReconErrorScoreCalculator.output(Model network,
INDArray[] input,
INDArray[] fMask,
INDArray[] lMask) |
protected INDArray[] |
VAEReconProbScoreCalculator.output(Model network,
INDArray[] input,
INDArray[] fMask,
INDArray[] lMask) |
protected INDArray |
AutoencoderScoreCalculator.output(Model net,
INDArray input,
INDArray fMask,
INDArray lMask) |
protected INDArray |
DataSetLossCalculator.output(Model network,
INDArray input,
INDArray fMask,
INDArray lMask) |
protected INDArray |
VAEReconErrorScoreCalculator.output(Model net,
INDArray input,
INDArray fMask,
INDArray lMask) |
protected INDArray |
VAEReconProbScoreCalculator.output(Model network,
INDArray input,
INDArray fMask,
INDArray lMask) |
protected double |
AutoencoderScoreCalculator.scoreMinibatch(Model network,
INDArray[] features,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
INDArray[] output) |
protected double |
DataSetLossCalculator.scoreMinibatch(Model network,
INDArray[] features,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
INDArray[] output) |
protected double |
VAEReconErrorScoreCalculator.scoreMinibatch(Model network,
INDArray[] features,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
INDArray[] output) |
protected double |
VAEReconProbScoreCalculator.scoreMinibatch(Model network,
INDArray[] features,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
INDArray[] output) |
protected double |
AutoencoderScoreCalculator.scoreMinibatch(Model network,
INDArray features,
INDArray labels,
INDArray fMask,
INDArray lMask,
INDArray output) |
protected double |
VAEReconErrorScoreCalculator.scoreMinibatch(Model network,
INDArray features,
INDArray labels,
INDArray fMask,
INDArray lMask,
INDArray output) |
protected double |
VAEReconProbScoreCalculator.scoreMinibatch(Model net,
INDArray features,
INDArray labels,
INDArray fMask,
INDArray lMask,
INDArray output) |
Modifier and Type | Class and Description |
---|---|
class |
BaseIEvaluationScoreCalculator<T extends Model,U extends IEvaluation> |
class |
BaseScoreCalculator<T extends Model> |
Modifier and Type | Class and Description |
---|---|
class |
BaseEarlyStoppingTrainer<T extends Model> |
interface |
IEarlyStoppingTrainer<T extends Model> |
Modifier and Type | Field and Description |
---|---|
protected T |
BaseEarlyStoppingTrainer.model |
Modifier and Type | Method and Description |
---|---|
protected void |
BaseEarlyStoppingTrainer.triggerEpochListeners(boolean epochStart,
Model model,
int epochNum) |
Modifier and Type | Method and Description |
---|---|
List<DetectedObject> |
YoloModelAdapter.apply(Model model,
INDArray[] inputs,
INDArray[] masks,
INDArray[] labelsMasks) |
Modifier and Type | Interface and Description |
---|---|
interface |
Classifier |
interface |
Layer |
Modifier and Type | Method and Description |
---|---|
T |
ModelAdapter.apply(Model model,
INDArray[] inputs,
INDArray[] inputMasks,
INDArray[] labelsMasks)
This method invokes model internally, and does convertion to T
|
Modifier and Type | Interface and Description |
---|---|
interface |
IOutputLayer |
interface |
RecurrentLayer |
Modifier and Type | Class and Description |
---|---|
class |
ComputationGraph |
Modifier and Type | Class and Description |
---|---|
class |
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradients
|
class |
ActivationLayer |
class |
BaseLayer<LayerConfT extends BaseLayer>
A layer with parameters
|
class |
BaseOutputLayer<LayerConfT extends BaseOutputLayer> |
class |
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> |
class |
DropoutLayer |
class |
FrozenLayer |
class |
FrozenLayerWithBackprop |
class |
LossLayer |
class |
OutputLayer |
class |
RepeatVector |
Modifier and Type | Class and Description |
---|---|
class |
Cnn3DLossLayer |
class |
CnnLossLayer |
class |
Convolution1DLayer |
class |
Convolution3DLayer |
class |
ConvolutionLayer |
class |
Cropping1DLayer |
class |
Cropping2DLayer |
class |
Cropping3DLayer |
class |
Deconvolution2DLayer |
class |
Deconvolution3DLayer |
class |
DepthwiseConvolution2DLayer |
class |
SeparableConvolution2DLayer |
class |
SpaceToBatch |
class |
SpaceToDepth |
class |
ZeroPadding1DLayer |
class |
ZeroPadding3DLayer |
class |
ZeroPaddingLayer |
Modifier and Type | Class and Description |
---|---|
class |
Subsampling1DLayer |
class |
Subsampling3DLayer |
class |
SubsamplingLayer |
Modifier and Type | Class and Description |
---|---|
class |
Upsampling1D |
class |
Upsampling2D |
class |
Upsampling3D |
Modifier and Type | Class and Description |
---|---|
class |
PReLU |
Modifier and Type | Class and Description |
---|---|
class |
AutoEncoder |
Modifier and Type | Class and Description |
---|---|
class |
DenseLayer |
Modifier and Type | Class and Description |
---|---|
class |
ElementWiseMultiplicationLayer |
Modifier and Type | Class and Description |
---|---|
class |
EmbeddingLayer |
class |
EmbeddingSequenceLayer |
Modifier and Type | Class and Description |
---|---|
class |
BatchNormalization |
class |
LocalResponseNormalization |
Modifier and Type | Class and Description |
---|---|
class |
Yolo2OutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
OCNNOutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
GlobalPoolingLayer |
Modifier and Type | Class and Description |
---|---|
class |
BaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer> |
class |
BidirectionalLayer |
class |
GravesBidirectionalLSTM |
class |
GravesLSTM
Deprecated.
|
class |
LastTimeStepLayer |
class |
LSTM |
class |
MaskZeroLayer |
class |
RnnLossLayer |
class |
RnnOutputLayer |
class |
SimpleRnn |
class |
TimeDistributedLayer |
Modifier and Type | Class and Description |
---|---|
class |
SameDiffLayer |
class |
SameDiffOutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
CenterLossOutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
MaskLayer |
Modifier and Type | Class and Description |
---|---|
class |
VariationalAutoencoder |
Modifier and Type | Class and Description |
---|---|
class |
BaseWrapperLayer |
Modifier and Type | Class and Description |
---|---|
class |
MultiLayerNetwork |
Modifier and Type | Class and Description |
---|---|
class |
BaseMultiLayerUpdater<T extends Model> |
Modifier and Type | Field and Description |
---|---|
protected T |
BaseMultiLayerUpdater.network |
Modifier and Type | Method and Description |
---|---|
static Updater |
UpdaterCreator.getUpdater(Model layer) |
Modifier and Type | Method and Description |
---|---|
Solver.Builder |
Solver.Builder.model(Model model) |
Modifier and Type | Method and Description |
---|---|
void |
BaseTrainingListener.iterationDone(Model model,
int iteration,
int epoch) |
abstract void |
IterationListener.iterationDone(Model model,
int iteration,
int epoch)
Deprecated.
Event listener for each iteration
|
void |
TrainingListener.iterationDone(Model model,
int iteration,
int epoch)
Event listener for each iteration.
|
void |
BaseTrainingListener.onBackwardPass(Model model) |
void |
TrainingListener.onBackwardPass(Model model)
Called once per iteration (backward pass) after gradients have been calculated, and updated
Gradients are available via
gradient() . |
void |
BaseTrainingListener.onEpochEnd(Model model) |
void |
TrainingListener.onEpochEnd(Model model)
Called once at the end of each epoch, when using methods such as
MultiLayerNetwork.fit(DataSetIterator) ,
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator) |
void |
BaseTrainingListener.onEpochStart(Model model) |
void |
TrainingListener.onEpochStart(Model model)
Called once at the start of each epoch, when using methods such as
MultiLayerNetwork.fit(DataSetIterator) ,
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator) |
void |
BaseTrainingListener.onForwardPass(Model model,
List<INDArray> activations) |
void |
TrainingListener.onForwardPass(Model model,
List<INDArray> activations)
Called once per iteration (forward pass) for activations (usually for a
MultiLayerNetwork ),
only at training time |
void |
BaseTrainingListener.onForwardPass(Model model,
Map<String,INDArray> activations) |
void |
TrainingListener.onForwardPass(Model model,
Map<String,INDArray> activations)
Called once per iteration (forward pass) for activations (usually for a
ComputationGraph ),
only at training time |
void |
BaseTrainingListener.onGradientCalculation(Model model) |
void |
TrainingListener.onGradientCalculation(Model model)
Called once per iteration (backward pass) before the gradients are updated
Gradients are available via
gradient() . |
void |
ConvexOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize,
LayerWorkspaceMgr workspaceMgr)
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
|
Modifier and Type | Method and Description |
---|---|
protected void |
FailureTestingListener.call(FailureTestingListener.CallType callType,
Model model) |
protected static int |
CheckpointListener.getEpoch(Model model) |
protected static int |
CheckpointListener.getIter(Model model) |
protected static String |
CheckpointListener.getModelType(Model model) |
protected void |
EvaluativeListener.invokeListener(Model model) |
void |
CheckpointListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
CollectScoresIterationListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
CollectScoresListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
ComposableIterationListener.iterationDone(Model model,
int iteration,
int epoch)
Deprecated.
|
void |
EvaluativeListener.iterationDone(Model model,
int iteration,
int epoch)
Event listener for each iteration
|
void |
FailureTestingListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
PerformanceListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
ScoreIterationListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
SleepyTrainingListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
TimeIterationListener.iterationDone(Model model,
int iteration,
int epoch) |
void |
FailureTestingListener.onBackwardPass(Model model) |
void |
SleepyTrainingListener.onBackwardPass(Model model) |
void |
CheckpointListener.onEpochEnd(Model model) |
void |
EvaluativeListener.onEpochEnd(Model model) |
void |
FailureTestingListener.onEpochEnd(Model model) |
void |
SleepyTrainingListener.onEpochEnd(Model model) |
void |
EvaluativeListener.onEpochStart(Model model) |
void |
FailureTestingListener.onEpochStart(Model model) |
void |
SleepyTrainingListener.onEpochStart(Model model) |
void |
FailureTestingListener.onForwardPass(Model model,
List<INDArray> activations) |
void |
SleepyTrainingListener.onForwardPass(Model model,
List<INDArray> activations) |
void |
FailureTestingListener.onForwardPass(Model model,
Map<String,INDArray> activations) |
void |
SleepyTrainingListener.onForwardPass(Model model,
Map<String,INDArray> activations) |
void |
FailureTestingListener.onGradientCalculation(Model model) |
void |
SleepyTrainingListener.onGradientCalculation(Model model) |
abstract boolean |
FailureTestingListener.FailureTrigger.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model)
If true: trigger the failure.
|
boolean |
FailureTestingListener.And.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.Or.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.RandomProb.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.TimeSinceInitializedTrigger.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.UserNameTrigger.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.HostNameTrigger.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
boolean |
FailureTestingListener.IterationEpochTrigger.triggerFailure(FailureTestingListener.CallType callType,
int iteration,
int epoch,
Model model) |
Modifier and Type | Method and Description |
---|---|
void |
EvaluationCallback.call(EvaluativeListener listener,
Model model,
long invocationsCount,
IEvaluation[] evaluations) |
void |
ModelSavingCallback.call(EvaluativeListener listener,
Model model,
long invocationsCount,
IEvaluation[] evaluations) |
protected void |
ModelSavingCallback.save(Model model,
String filename)
This method saves model
|
Modifier and Type | Field and Description |
---|---|
protected Model |
BaseOptimizer.model |
Modifier and Type | Method and Description |
---|---|
static void |
BaseOptimizer.applyConstraints(Model model) |
static int |
BaseOptimizer.getEpochCount(Model model) |
static int |
BaseOptimizer.getIterationCount(Model model) |
static void |
BaseOptimizer.incrementIterationCount(Model model,
int incrementBy) |
void |
BaseOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize,
LayerWorkspaceMgr workspaceMgr) |
Constructor and Description |
---|
BackTrackLineSearch(Model optimizable,
ConvexOptimizer optimizer) |
BackTrackLineSearch(Model layer,
StepFunction stepFunction,
ConvexOptimizer optimizer) |
BaseOptimizer(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<TrainingListener> trainingListeners,
Model model) |
ConjugateGradient(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<TrainingListener> trainingListeners,
Model model) |
LBFGS(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<TrainingListener> trainingListeners,
Model model) |
LineGradientDescent(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<TrainingListener> trainingListeners,
Model model) |
StochasticGradientDescent(NeuralNetConfiguration conf,
StepFunction stepFunction,
Collection<TrainingListener> trainingListeners,
Model model) |
Modifier and Type | Method and Description |
---|---|
static long |
EncodedGradientsAccumulator.getOptimalBufferSize(Model model,
int numWorkers,
int queueSize) |
Modifier and Type | Method and Description |
---|---|
static String |
CrashReportingUtil.generateMemoryStatus(Model net,
int minibatch,
InputType... inputTypes)
Generate memory/system report as a String, for the specified network.
|
static INDArray |
NetworkUtils.output(Model model,
INDArray input)
Currently supports
MultiLayerNetwork and ComputationGraph models. |
static Task |
ModelSerializer.taskByModel(Model model) |
static void |
CrashReportingUtil.writeMemoryCrashDump(@NonNull Model net,
@NonNull Throwable e)
Generate and write the crash dump to the crash dump root directory (by default, the working directory).
|
static void |
ModelSerializer.writeModel(@NonNull Model model,
@NonNull File file,
boolean saveUpdater)
Write a model to a file
|
static void |
ModelSerializer.writeModel(@NonNull Model model,
@NonNull File file,
boolean saveUpdater,
DataNormalization dataNormalization)
Write a model to a file
|
static void |
ModelSerializer.writeModel(@NonNull Model model,
@NonNull OutputStream stream,
boolean saveUpdater)
Write a model to an output stream
|
static void |
ModelSerializer.writeModel(@NonNull Model model,
@NonNull OutputStream stream,
boolean saveUpdater,
DataNormalization dataNormalization)
Write a model to an output stream
|
static void |
ModelSerializer.writeModel(@NonNull Model model,
@NonNull String path,
boolean saveUpdater)
Write a model to a file path
|
Copyright © 2021. All rights reserved.