o

dlm.model

GibbsSampling

object GibbsSampling extends App

Linear Supertypes
App, DelayedInit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GibbsSampling
  2. App
  3. DelayedInit
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State (p: Parameters, state: Array[(Double, DenseVector[Double])]) extends Product with Serializable

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def args: Array[String]
    Attributes
    protected
    Definition Classes
    App
    Annotations
    @deprecatedOverriding( "args should not be overridden" , "2.11.0" )
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def diff[A](xs: Seq[A])(implicit A: Numeric[A]): Seq[A]

    Calculate the lagged difference between items in a Seq

    Calculate the lagged difference between items in a Seq

    xs

    a sequence of numeric values

    returns

    a sequence of numeric values containing the once lagged difference

  8. def dinvGammaStep(mod: Model, priorV: InverseGamma, priorW: InverseGamma, observations: Array[Data])(gibbsState: State): Rand[State]

    A single step of a Gibbs Sampler

  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. val executionStart: Long
    Definition Classes
    App
    Annotations
    @deprecatedOverriding( ... , "2.11.0" )
  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  14. def gibbsMetropStep(proposal: (Parameters) ⇒ Rand[Parameters], mod: Model, priorV: InverseGamma, priorW: InverseGamma, observations: Array[Data])(gibbsState: State): Rand[State]
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. def main(args: Array[String]): Unit
    Definition Classes
    App
    Annotations
    @deprecatedOverriding( "main should not be overridden" , "2.11.0" )
  18. def metropSamples(proposal: (Parameters) ⇒ Rand[Parameters], mod: Model, priorV: InverseGamma, priorW: InverseGamma, initParams: Parameters, observations: Array[Data]): Process[State]
  19. def metropStep(mod: Model, observations: Array[Data], proposal: (Parameters) ⇒ Rand[Parameters]): (Parameters) ⇒ Rand[Parameters]
  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  23. def observationSquaredDifference(f: (Double) ⇒ DenseMatrix[Double], state: Array[(Double, DenseVector[Double])], observations: Array[Data]): DenseVector[Double]

    Calculate the sum of squared differences between the one step forecast and the actual observation for each time sum((y_t - f_t)^2)

    Calculate the sum of squared differences between the one step forecast and the actual observation for each time sum((y_t - f_t)^2)

    f

    the observation matrix, a function from time => DenseMatrix[Double]

    state

    an array containing the state sampled from the backward sampling algorithm

    observations

    an array containing the actual observations of the data

    returns

    the sum of squared differences between the one step forecast and the actual observation for each time

  24. def sample(mod: Model, priorV: InverseGamma, priorW: InverseGamma, initParams: Parameters, observations: Array[Data]): Process[State]

    Return a Markov chain using Gibbs Sampling to determine the values of the system and observation noise covariance matrices, W and V

    Return a Markov chain using Gibbs Sampling to determine the values of the system and observation noise covariance matrices, W and V

    mod

    the model containing the definition of the observation matrix F_t and system evolution matrix G_t

    priorV

    the prior distribution on the observation noise matrix, V

    priorW

    the prior distribution on the system noise matrix, W

    initParams

    the initial parameters of the Markov Chain

    observations

    an array of Data containing the observed time series

    returns

    a Process

  25. def sampleObservationMatrix(prior: InverseGamma, f: (Double) ⇒ DenseMatrix[Double], state: Array[(Double, DenseVector[Double])], observations: Array[Data]): Rand[DenseMatrix[Double]]

    Sample the (diagonal) observation noise covariance matrix from an Inverse Gamma distribution

    Sample the (diagonal) observation noise covariance matrix from an Inverse Gamma distribution

    prior

    an Inverse Gamma prior distribution for each variance element of the observation matrix

    state

    a sample of the DLM state

    observations

    the observed values of the time series

    returns

    the posterior distribution over the diagonal observation matrix

  26. def sampleSystemMatrix(prior: InverseGamma, g: (Double) ⇒ DenseMatrix[Double], state: Array[(Double, DenseVector[Double])]): Rand[DenseMatrix[Double]]

    Sample the diagonal system matrix for an irregularly observed DLM

  27. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  28. def toString(): String
    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def delayedInit(body: ⇒ Unit): Unit
    Definition Classes
    App → DelayedInit
    Annotations
    @deprecated
    Deprecated

    (Since version 2.11.0) the delayedInit mechanism will disappear

Inherited from App

Inherited from DelayedInit

Inherited from AnyRef

Inherited from Any

Ungrouped