object StudentTGibbs
- Alphabetic
- By Inheritance
- StudentTGibbs
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
case class
State
(p: Parameters, variances: Vector[Double], state: Vector[(Double, DenseVector[Double])]) extends Product with Serializable
The state of the Markov chain for the Student's t-distribution gibbs sampler
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
sample(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model, params: Parameters): Process[State]
Perform Gibbs Sampling for the Student t-distributed model
-
def
sampleScaleT(variances: Vector[Double], dof: Int): Rand[Double]
Sample the (square of the) scale of the Student's t distribution
-
def
sampleState(variances: Vector[Double], params: Parameters, mod: Model, observations: Vector[Data]): Rand[Vector[(Double, DenseVector[Double])]]
Sample the state, incorporating the drawn variances for each observation
-
def
sampleVariances(ys: Vector[Data], f: (Double) ⇒ DenseMatrix[Double], state: Vector[(Double, DenseVector[Double])], dof: Int, scale: Double): Rand[Vector[Double]]
Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter
Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter
- ys
an array of observations of length N
- f
the observation matrix
- state
a sample from the state, using sampleState
- dof
the degrees of freedom of the Student's t-distribution
- scale
the (square of the) scale of the Student's t-distribution
- returns
a Rand distribution over the list of N variances
-
def
step(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model)(state: State): Rand[State]
A single step of the Student t-distribution Gibbs Sampler
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )