o

dlm.model

StudentTGibbs

object StudentTGibbs

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StudentTGibbs
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State (p: Parameters, variances: Vector[Double], state: Vector[(Double, DenseVector[Double])]) extends Product with Serializable

    The state of the Markov chain for the Student's t-distribution gibbs sampler

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  15. def sample(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model, params: Parameters): Process[State]

    Perform Gibbs Sampling for the Student t-distributed model

  16. def sampleScaleT(variances: Vector[Double], dof: Int): Rand[Double]

    Sample the (square of the) scale of the Student's t distribution

  17. def sampleState(variances: Vector[Double], params: Parameters, mod: Model, observations: Vector[Data]): Rand[Vector[(Double, DenseVector[Double])]]

    Sample the state, incorporating the drawn variances for each observation

  18. def sampleVariances(ys: Vector[Data], f: (Double) ⇒ DenseMatrix[Double], state: Vector[(Double, DenseVector[Double])], dof: Int, scale: Double): Rand[Vector[Double]]

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    ys

    an array of observations of length N

    f

    the observation matrix

    state

    a sample from the state, using sampleState

    dof

    the degrees of freedom of the Student's t-distribution

    scale

    the (square of the) scale of the Student's t-distribution

    returns

    a Rand distribution over the list of N variances

  19. def step(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model)(state: State): Rand[State]

    A single step of the Student t-distribution Gibbs Sampler

  20. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  21. def toString(): String
    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped