case class MultivariateGaussianSvd(mu: DenseVector[Double], cov: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseVector[Double]] with Product with Serializable
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- MultivariateGaussianSvd
- Product
- Equals
- ContinuousDistr
- Rand
- Serializable
- Serializable
- Density
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(x: DenseVector[Double]): Double
- Definition Classes
- ContinuousDistr → Density
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
condition(p: (DenseVector[Double]) ⇒ Boolean): Rand[DenseVector[Double]]
- Definition Classes
- Rand
- val cov: DenseMatrix[Double]
-
def
draw(): DenseVector[Double]
Draw from a multivariate gaussian using eigen decomposition which is often more stable than using the cholesky decomposition
Draw from a multivariate gaussian using eigen decomposition which is often more stable than using the cholesky decomposition
- Definition Classes
- MultivariateGaussianSvd → Rand
-
def
drawOpt(): Option[DenseVector[Double]]
- Definition Classes
- Rand
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
filter(p: (DenseVector[Double]) ⇒ Boolean): Rand[DenseVector[Double]]
- Definition Classes
- Rand
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
flatMap[E](f: (DenseVector[Double]) ⇒ Rand[E]): Rand[E]
- Definition Classes
- Rand
-
def
foreach(f: (DenseVector[Double]) ⇒ Unit): Unit
- Definition Classes
- Rand
-
def
get(): DenseVector[Double]
- Definition Classes
- Rand
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
logApply(x: DenseVector[Double]): Double
- Definition Classes
- ContinuousDistr → Density
-
def
logNormalizer: Double
- Definition Classes
- MultivariateGaussianSvd → ContinuousDistr
-
def
logPdf(x: DenseVector[Double]): Double
- Definition Classes
- ContinuousDistr
-
def
map[E](f: (DenseVector[Double]) ⇒ E): Rand[E]
- Definition Classes
- Rand
- def mean: DenseVector[Double]
- def mode: DenseVector[Double]
- val mu: DenseVector[Double]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
lazy val
normalizer: Double
- Definition Classes
- ContinuousDistr
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
pdf(x: DenseVector[Double]): Double
- Definition Classes
- ContinuousDistr
-
def
sample(n: Int): IndexedSeq[DenseVector[Double]]
- Definition Classes
- Rand
-
def
sample(): DenseVector[Double]
- Definition Classes
- Rand
-
def
samples: Iterator[DenseVector[Double]]
- Definition Classes
- Rand
-
def
samplesVector[U >: DenseVector[Double]](size: Int)(implicit m: ClassTag[U]): DenseVector[U]
- Definition Classes
- Rand
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
unnormalizedLogPdf(x: DenseVector[Double]): Double
- Definition Classes
- MultivariateGaussianSvd → ContinuousDistr
-
def
unnormalizedPdf(x: DenseVector[Double]): Double
- Definition Classes
- ContinuousDistr
- def variance: DenseMatrix[Double]
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
withFilter(p: (DenseVector[Double]) ⇒ Boolean): Rand[DenseVector[Double]]
- Definition Classes
- Rand