package model
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- model
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Type Members
- case class InverseGamma (shape: Double, scale: Double)(implicit rand: RandBasis = Rand) extends ContinuousDistr[Double] with Moments[Double, Double] with Product with Serializable
- case class InverseWishart (nu: Double, psi: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable
-
case class
MatrixNormal
(mu: DenseMatrix[Double], u: DenseMatrix[Double], v: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Product with Serializable
A Normal distribution over matrices
A Normal distribution over matrices
- mu
the location of the distribution
- u
the variance of the rows
- v
the variance of the columns
- case class MultivariateGaussianSvd (mu: DenseVector[Double], cov: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseVector[Double]] with Product with Serializable
- case class ScaledStudentsT (dof: Double, location: Double, scale: Double)(implicit rand: RandBasis = Rand) extends ContinuousDistr[Double] with Moments[Double, Double] with Product with Serializable
- trait TimeSeries [F[_]] extends Monad[F] with Traverse[F]
- case class Wishart (n: Double, scale: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable
Value Members
-
implicit
def
dlm2dglm(dlmModel: Model): Model
A Gaussian DLM can be implicitly converted to a DGLM Then particle filtering methods can be used on Gaussian Models
- implicit val randMonad: Monad[Rand]
- object Dglm
- object Dlm
- object GibbsSampling extends App
-
object
GibbsWishart
This class learns a correlated system matrix using the InverseWishart prior on the system noise matrix
- object KalmanFilter
- object Metropolis
- object MetropolisHastings
-
object
ParticleFilter
The particle filter can be used for inference of Dynamic Generalised Linear Models (DGLMs), where the observation distribution is not Gaussian.
-
object
ParticleGibbs
Particle Gibbs Sampler for A Dynamic Generalised Linear Model
-
object
ParticleGibbsAncestor
extends App
Particle Gibbs with Ancestor Sampling Requires a Tractable state evolution kernel
- object Smoothing
-
object
Streaming
Utility class for parallelism and IO
- object StudentTGibbs
- object TimeSeries extends Serializable