o

dlm.model

Metropolis

object Metropolis

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Metropolis
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State [A](parameters: A, ll: Double, accepted: Int) extends Product with Serializable

    State for the Metropolis algorithm

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def dglm(mod: Model, observations: Array[Data], proposal: (Parameters) ⇒ Rand[Parameters], prior: (Parameters) ⇒ Double, initP: Parameters, n: Int): Process[State[Parameters]]
  7. def dlm(mod: Model, observations: Array[Data], proposal: (Parameters) ⇒ Rand[Parameters], prior: (Parameters) ⇒ Double, initP: Parameters): Process[State[Parameters]]

    Run the metropolis algorithm for a DLM, using the kalman filter to calculate the likelihood

  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. def mStep[A](proposal: (A) ⇒ Rand[A], prior: (A) ⇒ Double, likelihood: (A) ⇒ Double)(state: State[A]): Rand[State[A]]

    Metropolis kernel without re-evaluating the likelihood from the previous time step

  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  18. def proposeDiagonalMatrix(delta: Double)(m: DenseMatrix[Double]): Rand[DenseMatrix[Double]]

    Update the diagonal values of a covariance matrix by adding a Gaussian perturbation and ensuring the resulting diagonal is symmetric

    Update the diagonal values of a covariance matrix by adding a Gaussian perturbation and ensuring the resulting diagonal is symmetric

    delta

    the standard deviation of the innovation distribution

    m

    a diagonal DenseMatrix[Double], representing a covariance matrix

    returns

    a distribution over the diagonal matrices

  19. def proposeDouble(delta: Double)(a: Double): Rand[Double]

    Add a Random innovation to a numeric value using the Gaussian distribution

    Add a Random innovation to a numeric value using the Gaussian distribution

    delta

    the standard deviation of the innovation distribution

    a

    the starting value of the Double

    returns

    a Rand[Double] representing a perturbation of the double a which can be drawn from

  20. def proposeVector(delta: Double)(a: DenseVector[Double]): Rand[DenseVector[Double]]

    Add a Random innovation to a DenseVector[Double] using the Gaussian distribution

    Add a Random innovation to a DenseVector[Double] using the Gaussian distribution

    delta

    the standard deviation of the innovation distribution

    a

    the starting value of the parameter

    returns

    a Rand[DenseVector[Double]] representing a perturbation of the double a which can be drawn from

  21. def rmvn(chol: DenseMatrix[Double])(implicit rand: RandBasis = Rand): Rand[DenseVector[Double]]

    Simulate from a multivariate normal distribution given the cholesky decomposition of the covariance matrix

  22. def step[A](proposal: (A) ⇒ Rand[A], prior: (A) ⇒ Double, likelihood: (A) ⇒ Double)(state: (A, Double)): Rand[(A, Double)]

    A Single Step without acceptance ratio

  23. def symmetricProposal(delta: Double)(p: Parameters): Rand[Parameters]

    Propose a new value of the parameters on the log scale

  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. def toString(): String
    Definition Classes
    AnyRef → Any
  26. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped