object Dlm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dlm
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class Data(time: Double, observation: DenseVector[Option[Double]]) extends Product with Serializable

    A single observation of a model

  2. case class Model(f: (Double) ⇒ DenseMatrix[Double], g: (Double) ⇒ DenseMatrix[Double]) extends Product with Serializable

    Definition of a DLM

  3. case class Parameters(v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable

    Parameters of a DLM

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def angle(period: Int)(dt: Double): Double

    Get the angle of the rotation for the seasonal model

  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def autoregressive(phi: Double*): Model

    Define a discrete time univariate first order autoregressive model

    Define a discrete time univariate first order autoregressive model

    phi

    a sequence of autoregressive parameters of length equal to the order of the autoregressive state

  7. def blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]

    Build a block diagonal matrix by combining two matrices of the same size

  8. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  9. def composeModels(x: Model, y: Model): Model

    Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend

  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Double, p: Parameters): Stream[(Double, Double, Double)]

    Forecast a DLM from a state

    Forecast a DLM from a state

    mod

    a DLM

    mt

    the posterior mean of the state at time t (start of forecast)

    ct

    the posterior variance of the state at time t (start of forecast)

    time

    the starting time of the forecast

    p

    the parameters of the DLM

    returns

    a Stream of forecasts

  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. def outerSumModel(x: Model, y: Model): Model

    Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way

  21. def outerSumParameters(x: Parameters, y: Parameters): Parameters
  22. def polynomial(order: Int): Model

    A polynomial model

  23. def regression(x: Array[DenseVector[Double]]): Model

    A first order regression model with intercept

    A first order regression model with intercept

    x

    an array of covariates

  24. def rotationMatrix(theta: Double): DenseMatrix[Double]

    Build a 2 x 2 rotation matrix

  25. def seasonal(period: Int, harmonics: Int): Model

    Create a seasonal model with fourier components in the system evolution matrix

    Create a seasonal model with fourier components in the system evolution matrix

    period

    the period of the seasonality

    harmonics

    the number of harmonics in the seasonal model

    returns

    a seasonal DLM model

  26. def seasonalG(period: Int, harmonics: Int)(dt: Double): DenseMatrix[Double]

    Build the G matrix for the system evolution

  27. def simStep(mod: Model, x: DenseVector[Double], time: Double, p: Parameters, dt: Double): Rand[(Data, DenseVector[Double])]

    Simulate a single step from a DLM, used in simulateRegular

    Simulate a single step from a DLM, used in simulateRegular

    mod

    a DLM model

    x

    a realisation from the latent state at time t-1

    time

    the current time

    p

    the parameters of the DLM model

    dt

    the time increment between successive realisations of the process

  28. def simulate(times: Iterable[Double], mod: Model, p: Parameters): Iterable[(Data, DenseVector[Double])]

    Simulate from a DLM at the given times

  29. def simulateRegular(startTime: Double, mod: Model, p: Parameters, dt: Double): Process[(Data, DenseVector[Double])]

    Simulate from a DLM

  30. def simulateState(times: Iterable[Double], g: (Double) ⇒ DenseMatrix[Double], p: Parameters, init: (Double, DenseVector[Double])): Iterable[(Double, DenseVector[Double])]

    Simulate the state at the given times

  31. def simulateStateRegular(mod: Model, w: DenseMatrix[Double]): Process[(Double, DenseVector[Double])]

    Simulate the latent-state from a DLM model

  32. def stepForecast(mod: Model, time: Double, dt: Double, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Double, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    mod

    a DLM specification

    time

    the current time

    mt

    the mean of the latent state at time t

    ct

    the variance of the latent state at time t

    p

    the parameters of the DLM

  33. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  34. def toString(): String
    Definition Classes
    AnyRef → Any
  35. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped