package model
- Alphabetic
- By Inheritance
- model
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- case class InverseGamma(shape: Double, scale: Double)(implicit rand: RandBasis = Rand) extends ContinuousDistr[Double] with Moments[Double, Double] with Product with Serializable
- case class InverseWishart(nu: Double, psi: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable
-
case class
MatrixNormal(mu: DenseMatrix[Double], u: DenseMatrix[Double], v: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Product with Serializable
A Normal distribution over matrices
A Normal distribution over matrices
- mu
the location of the distribution
- u
the variance of the rows
- v
the variance of the columns
- case class MultivariateGaussianSvd(mu: DenseVector[Double], cov: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseVector[Double]] with Product with Serializable
- case class ScaledStudentsT(dof: Double, location: Double, scale: Double)(implicit rand: RandBasis = Rand) extends ContinuousDistr[Double] with Moments[Double, Double] with Product with Serializable
- case class Wishart(n: Double, scale: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable
Value Members
-
implicit
def
dlm2dglm(dlmModel: Model): Model
A Gaussian DLM can be implicitly converted to a DGLM Then particle filtering methods can be used on Gaussian Models
- implicit val randMonad: Monad[Rand]
- object Dglm
- object Dlm
- object FilterArray
- object GibbsSampling extends App
-
object
GibbsWishart
This class learns a correlated system matrix using the InverseWishart prior on the system noise matrix
- object KalmanFilter
- object Metropolis
- object MetropolisHastings
-
object
ParticleFilter
The particle filter can be used for inference of Dynamic Generalised Linear Models (DGLMs), where the observation distribution is not Gaussian.
-
object
ParticleGibbs
Particle Gibbs Sampler for A Dynamic Generalised Linear Model
-
object
ParticleGibbsAncestor extends App
Particle Gibbs with Ancestor Sampling Requires a Tractable state evolution kernel
- object Smoothing
-
object
Streaming
Utility class for parallelism and IO
- object StudentT
-
object
SvdFilter
Perform the Kalman Filter by updating the value of the Singular Value Decomp.
Perform the Kalman Filter by updating the value of the Singular Value Decomp. of the state covariance matrix, C = UDU^T https://arxiv.org/pdf/1611.03686.pdf
-
object
SvdSampler
Backward Sampler utilising the SVD for stability TODO: Check this