object GibbsWishart
This class learns a correlated system matrix using the InverseWishart prior on the system noise matrix
- Alphabetic
- By Inheritance
- GibbsWishart
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
sample(mod: Model, priorV: InverseGamma, priorW: InverseWishart, initParams: Parameters, observations: Vector[Data]): Process[State]
Perofrm Gibbs Sampling using an Inverse Wishart distribution for the system noise matrix
Perofrm Gibbs Sampling using an Inverse Wishart distribution for the system noise matrix
- mod
a DLM model specification
- priorV
the prior on the observation noise matrix
- priorW
the Inverse Wishart prior distribution on the system covariance matrix
- initParams
the intial parameters of the Markov Chain
- observations
a vector of time series observations
-
def
sampleSystemMatrix(priorW: InverseWishart, g: (Double) ⇒ DenseMatrix[Double], theta: Vector[(Double, DenseVector[Double])]): InverseWishart
Sample the system covariance matrix using an Inverse Wishart prior on the system covariance matrix
Sample the system covariance matrix using an Inverse Wishart prior on the system covariance matrix
- priorW
the prior distribution of the System evolution noise matrix
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
wishartStep(mod: Model, priorV: InverseGamma, priorW: InverseWishart, observations: Vector[Data]): (State) ⇒ Rand[State]
A single step of the Gibbs Wishart algorithm