o

core.dlm.model

GibbsWishart

object GibbsWishart

This class learns a correlated system matrix using the InverseWishart prior on the system noise matrix

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GibbsWishart
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. def sample(mod: Model, priorV: InverseGamma, priorW: InverseWishart, initParams: Parameters, observations: Vector[Data]): Process[State]

    Perofrm Gibbs Sampling using an Inverse Wishart distribution for the system noise matrix

    Perofrm Gibbs Sampling using an Inverse Wishart distribution for the system noise matrix

    mod

    a DLM model specification

    priorV

    the prior on the observation noise matrix

    priorW

    the Inverse Wishart prior distribution on the system covariance matrix

    initParams

    the intial parameters of the Markov Chain

    observations

    a vector of time series observations

  16. def sampleSystemMatrix(priorW: InverseWishart, g: (Double) ⇒ DenseMatrix[Double], theta: Vector[(Double, DenseVector[Double])]): InverseWishart

    Sample the system covariance matrix using an Inverse Wishart prior on the system covariance matrix

    Sample the system covariance matrix using an Inverse Wishart prior on the system covariance matrix

    priorW

    the prior distribution of the System evolution noise matrix

  17. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  18. def toString(): String
    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  22. def wishartStep(mod: Model, priorV: InverseGamma, priorW: InverseWishart, observations: Vector[Data]): (State) ⇒ Rand[State]

    A single step of the Gibbs Wishart algorithm

Inherited from AnyRef

Inherited from Any

Ungrouped