o

core.dlm.model

Smoothing

object Smoothing

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Smoothing
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class SamplingState(time: Double, sample: DenseVector[Double], at1: DenseVector[Double], rt1: DenseMatrix[Double]) extends Product with Serializable
  2. case class SmoothingState(time: Double, mean: DenseVector[Double], covariance: DenseMatrix[Double], at1: DenseVector[Double], rt1: DenseMatrix[Double]) extends Product with Serializable

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def backwardsSmoother(mod: Model)(kfState: Vector[State]): Vector[SmoothingState]

    Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time

    Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time

    mod

    a DLM model specification

    kfState

    the output of a Kalman Filter

  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def ffbs(mod: Model, observations: Vector[Data], p: Parameters): Rand[Vector[(Double, DenseVector[Double])]]

    Forward filtering backward sampling for a DLM

    Forward filtering backward sampling for a DLM

    mod

    the DLM

    observations

    a list of observations

    p

    parametes of the DLM

  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. def initialise(filtered: Vector[State]): SamplingState
  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def sample(mod: Model, filtered: Vector[State], w: DenseMatrix[Double]): Vector[(Double, DenseVector[Double])]
  19. def smoothStep(mod: Model)(kfState: State, state: SmoothingState): SmoothingState

    A single step in the backwards smoother Requires that a Kalman Filter has been run on the model

    A single step in the backwards smoother Requires that a Kalman Filter has been run on the model

    mod

    a DLM model specification

    state

    the state at time t + 1

  20. def step(mod: Model, w: DenseMatrix[Double])(kfState: State, state: SamplingState): SamplingState
  21. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  22. def toString(): String
    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped