object Smoothing
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- Smoothing
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Type Members
- case class SamplingState(time: Double, sample: DenseVector[Double], at1: DenseVector[Double], rt1: DenseMatrix[Double]) extends Product with Serializable
- case class SmoothingState(time: Double, mean: DenseVector[Double], covariance: DenseMatrix[Double], at1: DenseVector[Double], rt1: DenseMatrix[Double]) extends Product with Serializable
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
backwardsSmoother(mod: Model)(kfState: Vector[State]): Vector[SmoothingState]
Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time
Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time
- mod
a DLM model specification
- kfState
the output of a Kalman Filter
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
ffbs(mod: Model, observations: Vector[Data], p: Parameters): Rand[Vector[(Double, DenseVector[Double])]]
Forward filtering backward sampling for a DLM
Forward filtering backward sampling for a DLM
- mod
the DLM
- observations
a list of observations
- p
parametes of the DLM
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def initialise(filtered: Vector[State]): SamplingState
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def sample(mod: Model, filtered: Vector[State], w: DenseMatrix[Double]): Vector[(Double, DenseVector[Double])]
-
def
smoothStep(mod: Model)(kfState: State, state: SmoothingState): SmoothingState
A single step in the backwards smoother Requires that a Kalman Filter has been run on the model
A single step in the backwards smoother Requires that a Kalman Filter has been run on the model
- mod
a DLM model specification
- state
the state at time t + 1
- def step(mod: Model, w: DenseMatrix[Double])(kfState: State, state: SamplingState): SamplingState
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )