Packages

c

io.github.timsetsfire.datarobot

AdvancedOptions

case class AdvancedOptions(blueprintThreshold: Option[Int] = None, responseCap: Option[Double] = None, seed: Option[Int] = None, weights: Option[String] = None, rateTopPctThreshold: Option[Float] = None, offset: Option[String] = None, exposure: Option[String] = None, eventsCount: Option[String] = None, smartDownsampled: Option[Boolean] = None, majorityDownsamplingRate: Option[Double] = None, downsampledMinorityRows: Option[Int] = None, downsampledMajorityRows: Option[Int] = None, accuracyOptimizedMb: Option[Boolean] = None, scaleoutModelingMode: Option[Boolean] = None, defaultMonotonicIncreasingFeaturelistId: Option[String] = None, defaultMonotonicDecreasingFeaturelistId: Option[String] = None, onlyIncludeMonotonicBlueprints: Option[Boolean] = None, blendBestModels: Option[Boolean] = None, minSecondaryValidationModelCount: Option[Int] = None, scoringCodeOnly: Option[Boolean] = None, prepareModelForDeployment: Option[Boolean] = None, allowedPairwiseInteractionGroups: Option[Seq[Seq[String]]] = None) extends Product with Serializable

blueprintThreshold

an upper bound on running time (in hours), such that models exceeding the bound will be excluded in subsequent autopilot runs

responseCap

defaults to False, if specified used to cap the maximum response of a model

seed

defaults to null, the random seed to be used if specified

weights

the name of the weight column, if specified, otherwise null.

rateTopPctThreshold

- Optional, the percentage threshold between 0.1 and 50 for specifying the Rate@Top% metric.

offset

the list of names of the offset columns, if specified, other- wise null.

exposure

the name of the exposure column, if specified, other- wise null.

eventsCount

the name of the event count column, if specified, otherwise null.

smartDownsampled

whether the project uses smart downsampling to throw away excess rows of the majority class. Smart downsampled projects express all sample percents in terms of percent of minority rows (as opposed to percent of all rows).

majorityDownsamplingRate

the percentage be- tween 0 and 100 of the majority rows that are kept, or null for projects without smart down- sampling

downsampledMinorityRows

the total number of the minority rows available for modeling, or null for projects without smart downsampling

downsampledMajorityRows

the total number of the majority rows available for modeling, or null for projects without smart downsampling

accuracyOptimizedMb

Include additional, longer-running models that will be run by the autopilot and available to run manually

scaleoutModelingMode

Specifies the behavior of Scaleout models for the project. This is one of disabled, repositoryOnly, autopilot

defaultMonotonicIncreasingFeaturelistId

null or str, the ID of the featurelist specifying a set of features with a monotonically increasing relationship to the target. All blueprints generated in the project use this as their default monotonic constraint, but it can be overriden at model submission time.

defaultMonotonicDecreasingFeaturelistId

null or str, the ID of the featurelist specifying a set of features with a monotonically decreasing relationship to the target. All blueprints generated in the project use this as their default monotonic constraint, but it can be overriden at model submission time.

onlyIncludeMonotonicBlueprints

boolean (default to False), whether the project only includes blueprints support enforcing monotonic constraints

blendBestModels

optional, defaults to True. Blend best models during Autopilot run.

minSecondaryValidationModelCount

optional, defaults to 0. Compute “All backtest” scores (datetime models) or cross validation scores for the specified number of highest ranking models on the Leaderboard, if over the Autopilot default.

scoringCodeOnly

optional, defaults to False. Keep only models that can be converted to scorable java code during Autopilot run.

prepareModelForDeployment

optional, defaults to True. Prepare model for deployment during Autopilot run. The preparation includes creating reduced feature list models, retraining best model on higher sample size, computing insights and assigning “RECOMMENDED FOR DEPLOYMENT” label.

allowedPairwiseInteractionGroups

(array) –) op- tional. For GAM models - specify groups of columns for which pairwise interactions will be allowed. E.g. if set to “B”, “C”], [“C”, “D” then GAM models will allow interactions between columns AxB, BxC, AxC, CxD. All others (AxD, BxD) will not be considered. If not specified - all possible interactions will be considered by model.

returns

AdvancedOptions object

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AdvancedOptions
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new AdvancedOptions(blueprintThreshold: Option[Int] = None, responseCap: Option[Double] = None, seed: Option[Int] = None, weights: Option[String] = None, rateTopPctThreshold: Option[Float] = None, offset: Option[String] = None, exposure: Option[String] = None, eventsCount: Option[String] = None, smartDownsampled: Option[Boolean] = None, majorityDownsamplingRate: Option[Double] = None, downsampledMinorityRows: Option[Int] = None, downsampledMajorityRows: Option[Int] = None, accuracyOptimizedMb: Option[Boolean] = None, scaleoutModelingMode: Option[Boolean] = None, defaultMonotonicIncreasingFeaturelistId: Option[String] = None, defaultMonotonicDecreasingFeaturelistId: Option[String] = None, onlyIncludeMonotonicBlueprints: Option[Boolean] = None, blendBestModels: Option[Boolean] = None, minSecondaryValidationModelCount: Option[Int] = None, scoringCodeOnly: Option[Boolean] = None, prepareModelForDeployment: Option[Boolean] = None, allowedPairwiseInteractionGroups: Option[Seq[Seq[String]]] = None)

    The advancedOptions object specifies more settings for a project

    The advancedOptions object specifies more settings for a project

    blueprintThreshold

    an upper bound on running time (in hours), such that models exceeding the bound will be excluded in subsequent autopilot runs

    responseCap

    defaults to False, if specified used to cap the maximum response of a model

    seed

    defaults to null, the random seed to be used if specified

    weights

    the name of the weight column, if specified, otherwise null.

    rateTopPctThreshold

    - Optional, the percentage threshold between 0.1 and 50 for specifying the Rate@Top% metric.

    offset

    the list of names of the offset columns, if specified, other- wise null.

    exposure

    the name of the exposure column, if specified, other- wise null.

    eventsCount

    the name of the event count column, if specified, otherwise null.

    smartDownsampled

    whether the project uses smart downsampling to throw away excess rows of the majority class. Smart downsampled projects express all sample percents in terms of percent of minority rows (as opposed to percent of all rows).

    majorityDownsamplingRate

    the percentage be- tween 0 and 100 of the majority rows that are kept, or null for projects without smart down- sampling

    downsampledMinorityRows

    the total number of the minority rows available for modeling, or null for projects without smart downsampling

    downsampledMajorityRows

    the total number of the majority rows available for modeling, or null for projects without smart downsampling

    accuracyOptimizedMb

    Include additional, longer-running models that will be run by the autopilot and available to run manually

    scaleoutModelingMode

    Specifies the behavior of Scaleout models for the project. This is one of disabled, repositoryOnly, autopilot

    defaultMonotonicIncreasingFeaturelistId

    null or str, the ID of the featurelist specifying a set of features with a monotonically increasing relationship to the target. All blueprints generated in the project use this as their default monotonic constraint, but it can be overriden at model submission time.

    defaultMonotonicDecreasingFeaturelistId

    null or str, the ID of the featurelist specifying a set of features with a monotonically decreasing relationship to the target. All blueprints generated in the project use this as their default monotonic constraint, but it can be overriden at model submission time.

    onlyIncludeMonotonicBlueprints

    boolean (default to False), whether the project only includes blueprints support enforcing monotonic constraints

    blendBestModels

    optional, defaults to True. Blend best models during Autopilot run.

    minSecondaryValidationModelCount

    optional, defaults to 0. Compute “All backtest” scores (datetime models) or cross validation scores for the specified number of highest ranking models on the Leaderboard, if over the Autopilot default.

    scoringCodeOnly

    optional, defaults to False. Keep only models that can be converted to scorable java code during Autopilot run.

    prepareModelForDeployment

    optional, defaults to True. Prepare model for deployment during Autopilot run. The preparation includes creating reduced feature list models, retraining best model on higher sample size, computing insights and assigning “RECOMMENDED FOR DEPLOYMENT” label.

    allowedPairwiseInteractionGroups

    (array) –) op- tional. For GAM models - specify groups of columns for which pairwise interactions will be allowed. E.g. if set to “B”, “C”], [“C”, “D” then GAM models will allow interactions between columns AxB, BxC, AxC, CxD. All others (AxD, BxD) will not be considered. If not specified - all possible interactions will be considered by model.

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val accuracyOptimizedMb: Option[Boolean]
  5. val allowedPairwiseInteractionGroups: Option[Seq[Seq[String]]]
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. val blendBestModels: Option[Boolean]
  8. val blueprintThreshold: Option[Int]
  9. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @HotSpotIntrinsicCandidate()
  10. val defaultMonotonicDecreasingFeaturelistId: Option[String]
  11. val defaultMonotonicIncreasingFeaturelistId: Option[String]
  12. val downsampledMajorityRows: Option[Int]
  13. val downsampledMinorityRows: Option[Int]
  14. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. val eventsCount: Option[String]
  16. val exposure: Option[String]
  17. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. val majorityDownsamplingRate: Option[Double]
  20. val minSecondaryValidationModelCount: Option[Int]
  21. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  22. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  23. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  24. val offset: Option[String]
  25. val onlyIncludeMonotonicBlueprints: Option[Boolean]
  26. val prepareModelForDeployment: Option[Boolean]
  27. val rateTopPctThreshold: Option[Float]
  28. val responseCap: Option[Double]
  29. val scaleoutModelingMode: Option[Boolean]
  30. val scoringCodeOnly: Option[Boolean]
  31. val seed: Option[Int]
  32. val smartDownsampled: Option[Boolean]
  33. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  34. def toString(): String
    Definition Classes
    AdvancedOptions → AnyRef → Any
  35. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  37. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. val weights: Option[String]

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped