class DateTimeModel extends Model
- returns
DateTimeModel object
- Alphabetic
- By Inheritance
- DateTimeModel
- Model
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
DateTimeModel(effectiveFeatureDerivationWindowStart: Option[Int], backtests: Option[Seq[Backtest]], trainingDuration: Option[String], dataSelectionMethod: Option[String], parentModelId: Option[String], holdoutStatus: Option[String], modelFamily: Option[String], windowsBasisUnit: Option[String], forecastWindowStart: Option[Int], timeWindowSamplePct: Option[Double], samplingMethod: Option[String], modelNumber: Option[Int], effectiveFeatureDerivationWindowEnd: Option[Int], trainingInfo: TrainingInfo, forecastWindowEnd: Option[Int], linkFunction: Option[String], modelType: String, supportsMonotonicConstraints: Option[Boolean], blueprintId: String, isStarred: Boolean, id: String, projectId: String, isFrozen: Boolean, featurelistId: String, trainingRowCount: Option[Int], trainingEndDate: Option[String], samplePct: Option[Double], modelCategory: String, trainingStartDate: Option[String], metrics: Map[String, Metric], monotonicIncreasingFeaturelistId: Option[String], holdoutScore: Option[Double], predictionThreshold: Option[Double], processes: Array[String], featurelistName: String, predictionThresholdReadOnly: Option[Boolean], monotonicDecreasingFeaturelistId: Option[String])
class used to represent DateTime models.
class used to represent DateTime models. These should not be created directly.
- effectiveFeatureDerivationWindowStart
How many timeUnits into the past relative to the forecast point the user needs to provide history for at prediction time. This can differ from the featureDerivationWindowStart set on the project due to the differencing method and period selected, or if the model is a time series native model such as ARIMA. Will be a negative integer.
- backtests
an array of information on each backtesting fold of the model
- trainingDuration
– the duration spanned by the dates in the partition column for the data used to train the model
- dataSelectionMethod
– either “duration”, “rowCount”, or “selectedDateRange”. Identifies which of trainingDuration, trainingRowCount, or trainingStartDate and train- ingEndDate define the training size of the model when making predictions and scoring.
- parentModelId
This is the ID of the parent model. Otherwise Null.
- holdoutStatus
– the status of the holdout score. Either “COMPLETED”, “INSUFFI- CIENT_DATA” or “HOLDOUT_BOUNDARIES_EXCEEDED”
- windowsBasisUnit
Indicates which unit is the basis for the feature derivation window and the forecast window. Will be either detected time unit or “ROW”.
- forecastWindowStart
How many timeUnits into the future relative to the forecast point the forecast window should start. Will be a non-negative integer.
- timeWindowSamplePct
– an integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod (random uniform by default). Will be null if no sampling was specified.
- samplingMethod
(string) – string (New in version 2.20). Either ‘random’ or ‘latest’, indicates sampling method used to select training data. For row-based project this is the way how requested number of rows are selected. For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window.
- effectiveFeatureDerivationWindowEnd
How many timeUnits into the past relative to the forecast point the feature derivation window should end. Will be a non-positive integer.
- trainingInfo
– json object describing the holdout and prediction training data as de- scribed below
- forecastWindowEnd
How many timeUnits into the future relative to the forecast point the forecast window should end. Will be a non-negative integer.
- modelType
- identifies the model, e.g. Nystroem Kernel SVM Regressor blueprintId – the blueprint used to construct the model - note this is not an ObjectId
- supportsMonotonicConstraints
–boolean,whether this model supports enforcing montonic constraints
- id
–the ID of the model
- projectId
– the ID of the project to which the model belongs
- isFrozen
– boolean, indicating whether the model is frozen, i.e. uses tuning parameters from a parent model
- featurelistId
– the ID of the featurelist used by the model
- trainingRowCount
– the number of rows used to train the model
- trainingEndDate
– the end date of the dates in the partition column for the data used to train the model
- samplePct
– always null for datetime models
- modelCategory
–indicateswhatkindofmodelitis-willbeprimeforDataRobotPrime models, blend for blender models, and model for all other models
- trainingStartDate
– the start date of the dates in the partition column for the data used to train the model
- metrics
– the performance of the model according to ous metrics, see below modelType –
- monotonicIncreasingFeaturelistId
the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced.
- holdoutScore
– the holdout score of the model according to the project metric, if the score is available and the holdout is unlocked
- predictionThreshold
threshold used for binary classification in predictions.
- processes
– a json list of processes used by the model
- featurelistName
– the name of the featurelist used by the model
- predictionThresholdReadOnly
indicates whether modification of a predictions threshold is forbidden. Threshold modification is forbidden once a model has had a deployment created or predictions made via the dedicated prediction API.
- monotonicDecreasingFeaturelistId
the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced.
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
advancedTuning(description: String)(implicit client: DataRobotClient): AdvancedTuningSession
- Definition Classes
- Model
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
blueprintId: String
- Definition Classes
- Model
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
featurelistId: String
- Definition Classes
- Model
-
val
featurelistName: String
- Definition Classes
- Model
-
def
getCapabilities()(implicit client: DataRobotClient): (Map[String, Boolean], Map[String, String])
- Definition Classes
- Model
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getCrossValidationScores()(implicit client: DataRobotClient): Map[String, Map[String, Map[String, Double]]]
- Definition Classes
- Model
-
def
getFeatureEffects(source: String = "validation", backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): FeatureEffects
- Definition Classes
- DateTimeModel → Model
-
def
getFeatureEffectsMetaData()(implicit client: DataRobotClient): String
- Definition Classes
- DateTimeModel → Model
-
def
getFeatureFit(source: String = "validation", backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): FeatureFits
- Definition Classes
- DateTimeModel → Model
-
def
getFeatureFitMetaData()(implicit client: DataRobotClient): String
- Definition Classes
- DateTimeModel → Model
-
def
getFeatureImpact()(implicit client: DataRobotClient): FeatureImpacts
- Definition Classes
- Model
-
def
getHyperParameters()(implicit client: DataRobotClient): Map[String, List[Map[String, Any]]]
- Definition Classes
- Model
-
def
getLiftChart(source: enums.Source.Value)(implicit client: DataRobotClient): LiftChart
- Definition Classes
- Model
-
def
getLiftCharts()(implicit client: DataRobotClient): Map[String, List[LiftChart]]
- Definition Classes
- Model
-
def
getMissingValueReport()(implicit client: DataRobotClient): List[Map[_ <: String, Any]]
- Definition Classes
- Model
-
def
getModelBlueprintChart()(implicit client: DataRobotClient): Graph[BlueprintNode, LDiEdge]
- Definition Classes
- Model
-
def
getModelCoefficients()(implicit client: DataRobotClient): ModelCoefficients
- Definition Classes
- Model
- def getMultiseriesScores(orderBy: Option[String] = None, offset: Option[Int] = None, limit: Option[Int] = None, metric: Option[String] = None, multiseriesValue: Option[String] = None)(implicit client: DataRobotClient): List[MultiseriesMetrics]
- def getMultiseriesScoresAsCsv(): Nothing
-
def
getResiduals()(implicit client: DataRobotClient): Map[String, Map[String, ResidualData]]
- Definition Classes
- Model
-
def
getRocCurve(source: enums.Source.Value)(implicit client: DataRobotClient): RocCurve
- Definition Classes
- Model
-
def
getRocCurves()(implicit client: DataRobotClient): Map[String, List[RocCurve]]
- Definition Classes
- Model
-
def
getScoringCode(destination: Option[String] = None, sourceCode: Boolean = false)(implicit client: DataRobotClient): Unit
- Definition Classes
- Model
-
def
getWordCloud()(implicit client: DataRobotClient): WordCloud
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
val
id: String
- Definition Classes
- Model
-
val
isFrozen: Boolean
- Definition Classes
- Model
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
var
isStarred: Boolean
- Definition Classes
- Model
-
val
metrics: Map[String, Metric]
- Definition Classes
- Model
-
val
modelCategory: String
- Definition Classes
- Model
-
val
modelType: String
- Definition Classes
- Model
-
val
monotonicDecreasingFeaturelistId: Option[String]
- Definition Classes
- Model
-
val
monotonicIncreasingFeaturelistId: Option[String]
- Definition Classes
- Model
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
var
predictionThreshold: Option[Double]
- Definition Classes
- Model
-
var
predictionThresholdReadOnly: Option[Boolean]
- Definition Classes
- Model
-
val
processes: Array[String]
- Definition Classes
- Model
-
val
projectId: String
- Definition Classes
- Model
-
def
requestAndGetFeatureEffects(source: String = "validation", backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): FeatureEffects
- Definition Classes
- DateTimeModel → Model
-
def
requestAndGetFeatureFit(source: String = "validation", backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): FeatureFits
- Definition Classes
- DateTimeModel → Model
-
def
requestAndGetFeatureImpact(maxWait: Int = 600000)(implicit client: DataRobotClient): AnyRef
- Definition Classes
- Model
-
def
requestFeatureEffects(backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): Job
- Definition Classes
- DateTimeModel → Model
-
def
requestFeatureFit(backtestIndex: Option[String] = Some("0"))(implicit client: DataRobotClient): Job
- Definition Classes
- DateTimeModel → Model
-
def
requestFeatureImpact()(implicit client: DataRobotClient): Job
- Definition Classes
- Model
- def requestFrozenDateTimeModel(featurelistId: Option[String] = None, trainingDuration: Option[String] = None, trainingRowCount: Option[Int] = None, trainingStartDate: Option[String] = None, trainingEndDate: Option[String] = None, timeWindowSamplePct: Option[Int] = None, samplingMethod: Option[String] = None)(implicit client: DataRobotClient): ModelJob
-
def
requestFrozenModel(samplePct: Option[Float] = None, trainingRowCount: Option[Int] = None)(implicit client: DataRobotClient): ModelJob
- Definition Classes
- Model
- def requestMultiseriesScores()(implicit client: DataRobotClient): Job
-
def
requestPredictions(datasetId: String, includePredictionIntervals: Option[Boolean] = None, predictionIntervalSize: Option[Int] = None, forecastPoint: Option[String] = None, predictionsStartDate: Option[String] = None, predictionsEndDate: Option[String] = None)(implicit client: DataRobotClient): PredictJob
- Definition Classes
- Model
-
def
runCrossValidation()(implicit client: DataRobotClient): Job
- Definition Classes
- Model
-
val
samplePct: Option[Double]
- Definition Classes
- Model
- def scoreBacktests()(implicit client: DataRobotClient): ModelJob
-
def
starModel()(implicit client: DataRobotClient): Model
- Definition Classes
- Model
-
val
supportsMonotonicConstraints: Option[Boolean]
- Definition Classes
- Model
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- DateTimeModel → Model → AnyRef → Any
-
def
toggleStar(starred: Boolean)(implicit client: DataRobotClient): Model
- Definition Classes
- Model
-
val
trainingDuration: Option[String]
- Definition Classes
- Model
-
val
trainingEndDate: Option[String]
- Definition Classes
- Model
-
val
trainingRowCount: Option[Int]
- Definition Classes
- Model
-
val
trainingStartDate: Option[String]
- Definition Classes
- Model
-
def
unstarModel()(implicit client: DataRobotClient): Model
- Definition Classes
- Model
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated