Packages

c

io.github.timsetsfire.datarobot

DateTimePartitioningMethod

case class DateTimePartitioningMethod(validationType: Option[enums.ValidationType.Value] = None, datetimePartitionColumn: Option[String] = None, useTimeSeries: Option[Boolean] = None, unsupervisedMode: Option[Boolean] = None, multiseriesIdColumns: Option[Array[String]] = None, defaultToAPriori: Option[Boolean] = None, defaultToKnownInAdvance: Option[Boolean] = None, defaultToDoNotDerive: Option[Boolean] = None, featureDerivationWindowStart: Option[Int] = None, featureDerivationWindowEnd: Option[Int] = None, forecastWindowStart: Option[Int] = None, forecastWindowEnd: Option[Int] = None, windowsBasisUnit: Option[String] = None, validationDuration: Option[String] = None, disableHoldout: Option[Boolean] = None, holdoutStartDate: Option[String] = None, holdoutEndDate: Option[String] = None, holdoutDuration: Option[String] = None, gapDuration: Option[String] = None, numberOfBacktests: Option[Int] = None, autopilotDataSelectionMethod: Option[String] = None, treatAsExponential: Option[String] = None, differencingMethod: Option[String] = None, backtests: Option[Seq[DateTimeBackTestsSetup]] = None, featureSettings: Option[Seq[FeatureSetting]] = None, periodicities: Option[Seq[Periodicity]] = None, useCrossSeriesFeatures: Option[Boolean] = None, aggregationType: Option[String] = None, crossSeriesGroupByColumns: Option[Array[String]] = None, calendarId: Option[String] = None) extends PartitioningMethod with Product with Serializable

datetimePartitionColumn

–Thedatecolumnthatwillbeusedasadate- time partition column

useTimeSeries

(New in version v2.8) Optional, defaults to false. A boolean value indicating whether a time series project should be created instead of a regular project which uses datetime partitioning.

unsupervisedMode

(New in version v2.20) Optional, defaults to false. A boolean value indicating whether an unsupervised project should be created.

multiseriesIdColumns

(New in version v2.11) Optional, may only be specified for projects using time series. An array of column names identifying the multi- series id column(s) to use to identify series within the data. Currently only one multiseries id column may be specified. See the multiseries section of the docs for more context.

defaultToAPriori

(Deprecated in version v2.11) Optional, renamed to defaultToKnownInAdvance, see below for more detail.

defaultToKnownInAdvance

(New in version v2.11) Optional, for time series projects only. Sets whether all features default to being treated as known in advance features, which are features that are known into the future. Features marked as known in advance must be specified into the future when making predictions. The default is false, all features are not known in advance. Individual features can be set to a value different than the default using the featureSettings parameter. See the Time Series Overview for more context.

defaultToDoNotDerive

(New in version v2.17) Optional, for time se- ries projects only. Sets whether all features default to being treated as do-not-derive features, excluding them from feature derivation. Individual features can be set to a value different than the default by using the featureSettings parameter.

featureDerivationWindowStart

(New in version v2.8) Optional, may only be specified for projects using time series. How many timeUnits of the datetimeParti- tionColumn into the past relative to the forecast point the feature derivation window should begin. Must be a negative integer, if specified.

featureDerivationWindowEnd

(int)–(Newinversion2.8)Optional,mayonlybe specified for projects using time series. How many timeUnits of the datetimePartitionCol- umn into the past relative to the forecast point the feature derivation window should end. Must be a non-positive integer, if specified.

forecastWindowStart

(Newinversionv2.8)Optional,mayonlybespecified for projects using time series. How many timeUnits of the datetimePartitionColumn into the future relative to the forecast point the forecast window should start. Must be a non-negative integer, if specified.

forecastWindowEnd

(New in version v2.8) Optional, may only be specified for projects using time series. How many timeUnits of the datetimePartitionColumn into the future relative to the forecast point the forecast window should end. Must be a non- negative integer, if specified.

windowsBasisUnit

(New in version v2.14) Optional, may only be speci- fied for projects using time series. Indicates which unit is basis for feature derivation window and forecast window. Valid options are detected time unit or “ROW”. If omitted, the default value is detected time unit.

validationDuration

Optional. A duration string representing the de- fault validation duration for all backtests. If the primary date/time feature in a time series project is irregular, you cannot set a default validation length. Instead, set each duration individually.

disableHoldout

(New in version v2.8) Optional. A boolean value indi- cating whether date partitioning should skip allocating a holdout fold. If omitted, the default value is false. When specifying disableHoldout: true, holdoutStartDate and holdoutDura- tion must not be set.

holdoutStartDate

Optional. A datetime string representing the start date of the holdout fold. When specifying holdoutStartDate, one of holdoutEndDate or holdout- Duration must also be specified. This attribute cannot be specified when disableHoldout is true.

holdoutEndDate

Optional. A datetime string representing the end date of the holdout fold. When specifying holdoutEndDate, holdoutStartDate must also be speci- fied. This attribute cannot be specified when disableHoldout is true.

holdoutDuration

Optional. A duration string representing the duration of the holdout fold. When specifying holdoutDuration, holdoutStartDate must also be spec- ified. This attribute cannot be specified when disableHoldout is true.

gapDuration

Optional, a duration string representing the duration of the gap between the training and the holdout data for the holdout model. For time series projects, defaults to the duration of the gap between the end of the feature derivation win- dow and the beginning of the forecast window. For OTV projects, defaults to a zero duration (P0Y0M0D).

numberOfBacktests

Optional, the number of backtests to use. If omitted, defaults to a positive value selected by the server based on the validation and gap durations.

autopilotDataSelectionMethod

–Optional,either“duration”or“row- Count”. Defaults to “duration”. Whether models created via the autopilot will use “row- Count” or “duration” as their dataSelectionMethod.

treatAsExponential

(New in version v2.9) Optional, defaults to “auto”. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. Valid options are “always”, “never”, “auto”.

differencingMethod

(New in version v2.9) Optional, defaults to “auto” for timeseries projects. Used to specify which differencing method to apply if the data is stationary. Valid options are “auto”, “simple”, “none”, “seasonal”. Parameter “periodicities” must be specified if “seasonal” is chosen.

backtests

Optional. An array specifying individual backtests. The index of the backtests specified should range from 0 to numberOfBacktests - 1.

featureSettings

(New in version v2.9) Optional, an array specifying per feature settings. Features can be left unspecified.

periodicities

(Newinversionv2.9)Optional,alistofperiodicities.Ifthis is provided, parameter “differencing_method” will default to “seasonal” if not provided or “auto”.

useCrossSeriesFeatures

(New in version v2.14) Indicating whether to use cross-series features.

aggregationType

(New in version v2.14) The aggregation type to apply when creating cross-series features. Optional, must be one of “total” or “average”.

crossSeriesGroupByColumns

(New in version v2.15) List of columns (currently of length 1). Optional setting that indicates how to further split series into related groups. For example, if every series is sales of an individual product, the series group-by could be the product category with values like “men’s clothing”, “sports equipment”, etc.. Must be used with multiseries and useCrossSeriesFeatures enabled.

calendarId

– (New in version v2.15) Optional, the ID of the calendar to use with this project.

Linear Supertypes
Serializable, Serializable, Product, Equals, PartitioningMethod, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DateTimePartitioningMethod
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. PartitioningMethod
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DateTimePartitioningMethod(validationType: Option[enums.ValidationType.Value] = None, datetimePartitionColumn: Option[String] = None, useTimeSeries: Option[Boolean] = None, unsupervisedMode: Option[Boolean] = None, multiseriesIdColumns: Option[Array[String]] = None, defaultToAPriori: Option[Boolean] = None, defaultToKnownInAdvance: Option[Boolean] = None, defaultToDoNotDerive: Option[Boolean] = None, featureDerivationWindowStart: Option[Int] = None, featureDerivationWindowEnd: Option[Int] = None, forecastWindowStart: Option[Int] = None, forecastWindowEnd: Option[Int] = None, windowsBasisUnit: Option[String] = None, validationDuration: Option[String] = None, disableHoldout: Option[Boolean] = None, holdoutStartDate: Option[String] = None, holdoutEndDate: Option[String] = None, holdoutDuration: Option[String] = None, gapDuration: Option[String] = None, numberOfBacktests: Option[Int] = None, autopilotDataSelectionMethod: Option[String] = None, treatAsExponential: Option[String] = None, differencingMethod: Option[String] = None, backtests: Option[Seq[DateTimeBackTestsSetup]] = None, featureSettings: Option[Seq[FeatureSetting]] = None, periodicities: Option[Seq[Periodicity]] = None, useCrossSeriesFeatures: Option[Boolean] = None, aggregationType: Option[String] = None, crossSeriesGroupByColumns: Option[Array[String]] = None, calendarId: Option[String] = None)

    datetimePartitionColumn

    –Thedatecolumnthatwillbeusedasadate- time partition column

    useTimeSeries

    (New in version v2.8) Optional, defaults to false. A boolean value indicating whether a time series project should be created instead of a regular project which uses datetime partitioning.

    unsupervisedMode

    (New in version v2.20) Optional, defaults to false. A boolean value indicating whether an unsupervised project should be created.

    multiseriesIdColumns

    (New in version v2.11) Optional, may only be specified for projects using time series. An array of column names identifying the multi- series id column(s) to use to identify series within the data. Currently only one multiseries id column may be specified. See the multiseries section of the docs for more context.

    defaultToAPriori

    (Deprecated in version v2.11) Optional, renamed to defaultToKnownInAdvance, see below for more detail.

    defaultToKnownInAdvance

    (New in version v2.11) Optional, for time series projects only. Sets whether all features default to being treated as known in advance features, which are features that are known into the future. Features marked as known in advance must be specified into the future when making predictions. The default is false, all features are not known in advance. Individual features can be set to a value different than the default using the featureSettings parameter. See the Time Series Overview for more context.

    defaultToDoNotDerive

    (New in version v2.17) Optional, for time se- ries projects only. Sets whether all features default to being treated as do-not-derive features, excluding them from feature derivation. Individual features can be set to a value different than the default by using the featureSettings parameter.

    featureDerivationWindowStart

    (New in version v2.8) Optional, may only be specified for projects using time series. How many timeUnits of the datetimeParti- tionColumn into the past relative to the forecast point the feature derivation window should begin. Must be a negative integer, if specified.

    featureDerivationWindowEnd

    (int)–(Newinversion2.8)Optional,mayonlybe specified for projects using time series. How many timeUnits of the datetimePartitionCol- umn into the past relative to the forecast point the feature derivation window should end. Must be a non-positive integer, if specified.

    forecastWindowStart

    (Newinversionv2.8)Optional,mayonlybespecified for projects using time series. How many timeUnits of the datetimePartitionColumn into the future relative to the forecast point the forecast window should start. Must be a non-negative integer, if specified.

    forecastWindowEnd

    (New in version v2.8) Optional, may only be specified for projects using time series. How many timeUnits of the datetimePartitionColumn into the future relative to the forecast point the forecast window should end. Must be a non- negative integer, if specified.

    windowsBasisUnit

    (New in version v2.14) Optional, may only be speci- fied for projects using time series. Indicates which unit is basis for feature derivation window and forecast window. Valid options are detected time unit or “ROW”. If omitted, the default value is detected time unit.

    validationDuration

    Optional. A duration string representing the de- fault validation duration for all backtests. If the primary date/time feature in a time series project is irregular, you cannot set a default validation length. Instead, set each duration individually.

    disableHoldout

    (New in version v2.8) Optional. A boolean value indi- cating whether date partitioning should skip allocating a holdout fold. If omitted, the default value is false. When specifying disableHoldout: true, holdoutStartDate and holdoutDura- tion must not be set.

    holdoutStartDate

    Optional. A datetime string representing the start date of the holdout fold. When specifying holdoutStartDate, one of holdoutEndDate or holdout- Duration must also be specified. This attribute cannot be specified when disableHoldout is true.

    holdoutEndDate

    Optional. A datetime string representing the end date of the holdout fold. When specifying holdoutEndDate, holdoutStartDate must also be speci- fied. This attribute cannot be specified when disableHoldout is true.

    holdoutDuration

    Optional. A duration string representing the duration of the holdout fold. When specifying holdoutDuration, holdoutStartDate must also be spec- ified. This attribute cannot be specified when disableHoldout is true.

    gapDuration

    Optional, a duration string representing the duration of the gap between the training and the holdout data for the holdout model. For time series projects, defaults to the duration of the gap between the end of the feature derivation win- dow and the beginning of the forecast window. For OTV projects, defaults to a zero duration (P0Y0M0D).

    numberOfBacktests

    Optional, the number of backtests to use. If omitted, defaults to a positive value selected by the server based on the validation and gap durations.

    autopilotDataSelectionMethod

    –Optional,either“duration”or“row- Count”. Defaults to “duration”. Whether models created via the autopilot will use “row- Count” or “duration” as their dataSelectionMethod.

    treatAsExponential

    (New in version v2.9) Optional, defaults to “auto”. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. Valid options are “always”, “never”, “auto”.

    differencingMethod

    (New in version v2.9) Optional, defaults to “auto” for timeseries projects. Used to specify which differencing method to apply if the data is stationary. Valid options are “auto”, “simple”, “none”, “seasonal”. Parameter “periodicities” must be specified if “seasonal” is chosen.

    backtests

    Optional. An array specifying individual backtests. The index of the backtests specified should range from 0 to numberOfBacktests - 1.

    featureSettings

    (New in version v2.9) Optional, an array specifying per feature settings. Features can be left unspecified.

    periodicities

    (Newinversionv2.9)Optional,alistofperiodicities.Ifthis is provided, parameter “differencing_method” will default to “seasonal” if not provided or “auto”.

    useCrossSeriesFeatures

    (New in version v2.14) Indicating whether to use cross-series features.

    aggregationType

    (New in version v2.14) The aggregation type to apply when creating cross-series features. Optional, must be one of “total” or “average”.

    crossSeriesGroupByColumns

    (New in version v2.15) List of columns (currently of length 1). Optional setting that indicates how to further split series into related groups. For example, if every series is sales of an individual product, the series group-by could be the product category with values like “men’s clothing”, “sports equipment”, etc.. Must be used with multiseries and useCrossSeriesFeatures enabled.

    calendarId

    – (New in version v2.15) Optional, the ID of the calendar to use with this project.

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val aggregationType: Option[String]
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. val autopilotDataSelectionMethod: Option[String]
  7. val backtests: Option[Seq[DateTimeBackTestsSetup]]
  8. val calendarId: Option[String]
  9. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @HotSpotIntrinsicCandidate()
  10. val crossSeriesGroupByColumns: Option[Array[String]]
  11. val cvMethod: enums.CVMethod.Value
  12. val datetimePartitionColumn: Option[String]
  13. val defaultToAPriori: Option[Boolean]
  14. val defaultToDoNotDerive: Option[Boolean]
  15. val defaultToKnownInAdvance: Option[Boolean]
  16. val differencingMethod: Option[String]
  17. val disableHoldout: Option[Boolean]
  18. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. val featureDerivationWindowEnd: Option[Int]
  20. val featureDerivationWindowStart: Option[Int]
  21. val featureSettings: Option[Seq[FeatureSetting]]
  22. val forecastWindowEnd: Option[Int]
  23. val forecastWindowStart: Option[Int]
  24. val gapDuration: Option[String]
  25. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  26. val holdoutDuration: Option[String]
  27. val holdoutEndDate: Option[String]
  28. val holdoutStartDate: Option[String]
  29. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  30. val multiseriesIdColumns: Option[Array[String]]
  31. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  32. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  33. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  34. val numberOfBacktests: Option[Int]
  35. val periodicities: Option[Seq[Periodicity]]
  36. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  37. val treatAsExponential: Option[String]
  38. val unsupervisedMode: Option[Boolean]
  39. val useCrossSeriesFeatures: Option[Boolean]
  40. val useTimeSeries: Option[Boolean]
  41. val validationDuration: Option[String]
  42. val validationType: Option[enums.ValidationType.Value]
  43. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  45. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. val windowsBasisUnit: Option[String]

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from PartitioningMethod

Inherited from AnyRef

Inherited from Any

Ungrouped