class Project extends AnyRef
- Alphabetic
- By Inheritance
- Project
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Project(id: String, projectName: String, fileName: String, stage: String, autopilotMode: Option[Double], created: String, target: Option[String], metric: Option[String], partition: Option[Partition], recommender: Option[Recommender], advancedOptions: Option[AdvancedOptions], positiveClass: Option[Double], maxTrainPct: Option[Double], maxTrainRows: Option[Double], scaleoutMaxTrainPct: Option[Double], scaleoutMaxTrainRows: Option[Double], holdoutUnlocked: Boolean = false, targetType: Option[String])
create a new project.
create a new project.
- id
project id
- projectName
project name
- fileName
the name of the dataset used to create the project
- autopilotMode
0 if autopiloe, 2 is manual
- created
project creation time
- target
project target
- metric
the metric used to select the best-performing models
- partition
partition of given project. See io.github.timsetsfire.datarobot.Partition.
- recommender
does nothing
- advancedOptions
advanced options of the project. See io.github.timsetsfire.datarobot.AdvancedOptions.
- positiveClass
for binary classification projects, the class designated to be the positive class. Otherwise, null.
- maxTrainPct
the maximum percentage of the dataset that can be used to successfully train a model without going into the validation data
- maxTrainRows
the maximum number of rows of the dataset that can be used to suc- cessfully train a model without going into the validation data
- scaleoutMaxTrainPct
the maximum percentage of the dataset that can be used to successfully train a scaleout model without going into the validation data. May exceed maxTrainPct, in which case only scaleout models can be trained up to this point.
- scaleoutMaxTrainRows
the maximum number of rows of the dataset that can used be used to successfully train a scaleout model without going into the validation data. May exceed maxTrainRows, in which case only scaleout models can be trained up to this point.
- holdoutUnlocked
true if holdout has been unlocked
- targetType
either Regression, Binary, or Multiclass
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- var advancedOptions: Option[AdvancedOptions]
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- var autopilotMode: Option[Double]
-
def
clone(newProjectName: String, maxWait: Int = 60000)(implicit client: DataRobotClient): Project
- newProjectName
Name of returns project
- maxWait
Max wait time
- returns
Returns a copy (post-EDA1) copy of the project.
- To do
add maxWait appropriate to request happening behind the scenes.
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
createBlender(models: List[Model], blenderMethod: enums.BlenderMethod.Value)(implicit client: DataRobotClient): ModelJob
- models
list of io.github.timsetsfire.datarobot.Model to use for blending
- blenderMethod
- returns
Returns io.github.timsetsfire.datarobot.ModelJob for the requested blender
-
def
createFeaturelist(name: String, features: List[String])(implicit client: DataRobotClient): Featurelist
Create feature list within a project.
Create feature list within a project. see also io.github.timsetsfire.datarobot.Featurelist.createFeaturelist
- name
Name for new featurelist
- features
List of feature names to include in list
- returns
new feature list object io.github.timsetsfire.datarobot.Featurelist
- val created: String
-
def
delete()(implicit client: DataRobotClient): HttpResponse[String]
- returns
Returns Unit. Deletes projects
- def deleteFeaturelist(featurelistId: String)(implicit cleint: DataRobotClient): HttpResponse[String]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val fileName: String
-
def
getAccessList()(implicit client: DataRobotClient): List[Map[String, String]]
- returns
list of users and permissions for given project
- def getAssociationFeatureLists()(implicit client: DataRobotClient): Seq[Map[String, String]]
-
def
getBlenderEligibility(models: List[Model], blenderMethod: enums.BlenderMethod.Value)(implicit client: DataRobotClient): Map[String, Any]
- models
List of models to blend together
-
def
getBlenders()(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getBlueprint(id: String)(implicit client: DataRobotClient): Blueprint
- id
blueprint id
- returns
blueprint
-
def
getBlueprintChart(blueprintId: String)(implicit client: DataRobotClient): Nothing
- blueprintId
blueprint d
- To do
implement this
-
def
getBlueprintDocumentation(blueprintId: String)(implicit client: DataRobotClient): Nothing
- blueprintId
blueprint d
- To do
implement this
-
def
getBlueprints()(implicit client: DataRobotClient): List[Blueprint]
- returns
returns a list of eligible blueprints
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getDatasets()(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getFeature(featureName: String)(implicit client: DataRobotClient): Feature
- returns
return io.github.timsetsfire.datarobot.Feature given specified featurename
-
def
getFeatureAssocationMatrix(metric: enums.FeatureAssociationMetric.Value = FeatureAssociationMetric.MUTUALINFO, atype: enums.FeatureAssociationType.Value = FeatureAssociationType.ASSOCIATION, featurelistId: Option[String] = None)(implicit client: DataRobotClient): (Counter2[String, String, Double], List[FeatureAssociationDetail])
- metric
association matrix metric
- atype
association matric value type
- returns
returns feature association matric for a given featurelist
-
def
getFeatureAssociationMatrixDetails(feature1: String, feature2: String, featurelistId: Option[String] = None)(implicit client: DataRobotClient): Map[String, Any]
- returns
Returns associtation matric details for
feature1
andfeature2
.
-
def
getFeaturelists()(implicit client: DataRobotClient): List[Featurelist]
- returns
all featurelists available in project
-
def
getFeatures()(implicit client: DataRobotClient): List[Feature]
- returns
set of all features available in project
-
def
getFrozenModel(modelId: String)(implicit client: DataRobotClient): Nothing
- modelId
model id to get
- returns
frozen model for specified id
- To do
implement this
-
def
getFrozenModels()(implicit client: DataRobotClient): List[FrozenModel]
- returns
list of frozen models for project
- def getJob(jobId: String)(implicit client: DataRobotClient): Job
- def getJobs(status: Option[String] = None)(implicit client: DataRobotClient): List[Job]
-
def
getLeaderboardLink()(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getMetrics(featureName: String)(implicit client: DataRobotClient): Map[String, Any]
- returns
set of metrics available if given
featureName
is set as target
-
def
getModel(modelId: String)(implicit client: DataRobotClient): Model
- modelId
model id to get
- returns
model for specified
modelId
- def getModelJob(jobId: String)(implicit client: DataRobotClient): Job
- def getModelJobs(status: Option[String] = None)(implicit client: DataRobotClient): List[Job]
-
def
getModels()(implicit client: DataRobotClient): List[Model]
- returns
list of models for the project
-
def
getPredictJob(jobId: String)(implicit client: DataRobotClient): Job
- To do
implement this
- def getPredictJobs(status: Option[String] = None)(implicit client: DataRobotClient): List[Job]
-
def
getPrimeFiles(projectId: String)(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getPrimeModels(projectId: String)(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getRatingTableModels(projectId: String)(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getRatingTables(projectId: String)(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
getRecommendedModel()(implicit client: DataRobotClient): ModelRecommendation
- returns
Returns model recommended for deployment
-
def
getRecommendedModels()(implicit client: DataRobotClient): List[ModelRecommendation]
- returns
REturns a list of models recommended by DataRobot
-
def
getReducedBlueprintChart(blueprintId: String)(implicit client: DataRobotClient): Nothing
- blueprintId
blueprint d
- To do
implement this
-
def
getStatus(projectId: String)(implicit client: DataRobotClient): Nothing
- To do
implement this
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- var holdoutUnlocked: Boolean
- val id: String
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- var maxTrainPct: Option[Double]
- var maxTrainRows: Option[Double]
- var metric: Option[String]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- var partition: Option[Partition]
- var positiveClass: Option[Double]
- var projectName: String
- def refresh()(implicit client: DataRobotClient): Project
-
def
requestFeatureAssocationMatrix(featurelistId: String)(implicit client: DataRobotClient): String
Caluclated assocation matrix for specific featurelist
- var scaleoutMaxTrainPct: Option[Double]
- var scaleoutMaxTrainRows: Option[Double]
- def setAccessList()(implicit client: DataRobotClient): Nothing
- def setProjectName(name: String)(implicit client: DataRobotClient): Project
-
def
setTarget(target: String, mode: enums.ModelingMode.Value = ModelingMode.AUTOPILOT, metric: Option[String] = None, quickrun: Boolean = false, positiveClass: Option[String] = None, partitioningMethod: Option[PartitioningMethod] = None, featurelistId: Option[String] = None, advancedOptions: Option[AdvancedOptions] = None, maxWait: Int = 600000, targetType: Option[enums.TargetType.Value] = None, workerCount: Option[Int] = None)(implicit client: DataRobotClient): Project
Start modeling
-
def
setWorkerCount(workerCount: Int)(implicit client: DataRobotClient): Unit
- workerCount
Number of workers to use for modeling
- var stage: String
- def startAutopilot(projectId: String, featurelistId: Option[String] = None)(implicit client: DataRobotClient): HttpRequest
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- var target: Option[String]
- var targetType: Option[String]
- def toDateTimeProject: DateTimeProject
-
def
toString(): String
- Definition Classes
- Project → AnyRef → Any
- def train(blueprint: Blueprint, featurelistId: Option[String] = None, samplePct: Option[Float] = None, trainingRowCount: Option[Int] = None, sourceProjectId: Option[String] = None, scoringType: Option[String] = None, monotonicIncreasingFeaturelistId: Option[String] = None, monotonicDecreasingFeaturelistId: Option[String] = None)(implicit client: DataRobotClient): ModelJob
- def unlockHoldout()(implicit client: DataRobotClient): Project
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated