class Model extends AnyRef
Model
- Alphabetic
- By Inheritance
- Model
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Model(featurelistId: String, processes: Array[String], featurelistName: String, projectId: String, samplePct: Option[Double], trainingDuration: Option[String], trainingRowCount: Option[Int], trainingStartDate: Option[String], trainingEndDate: Option[String], modelCategory: String, isFrozen: Boolean = false, metrics: Map[String, Metric], modelType: String, blueprintId: String, monotonicIncreasingFeaturelistId: Option[String] = None, monotonicDecreasingFeaturelistId: Option[String] = None, supportsMonotonicConstraints: Option[Boolean] = None, id: String, isStarred: Boolean = false, predictionThreshold: Option[Double], predictionThresholdReadOnly: Option[Boolean])
- featurelistId
the ID of the featurelist used by the model
- processes
a json list of processes used by the model
- featurelistName
the name of the featurelist used by the model
- projectId
the ID of the project to which the model belongs
- samplePct
the percentage of the dataset used in training the model
- trainingDuration
the duration spanned by the dates in the partition column for the data used to train the model
- trainingRowCount
the number of rows used to train the model
- trainingStartDate
the start date of the dates in the partition column for the data used to train the model
- trainingEndDate
the end date of the dates in the partition column for the data used to train the model
- modelCategory
indicateswhatkindofmodelitis -willbeprimeforDataRobotPrime models, blend for blender models, scaleout for scaleout models, and model for all other models
- isFrozen
boolean, indicating whether the model is frozen, i.e. uses tuning parameters from a parent model
- metrics
the performance of the model according to various metrics, see below
- modelType
identifies the model, e.g. Nystroem Kernel SVM Regressor
- blueprintId
the blueprint used to construct the model - note this is not an ObjectId
- monotonicIncreasingFeaturelistId
(new in v2.11) null or str, the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced.
- monotonicDecreasingFeaturelistId
(new in v2.11) null or str, the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced.
- supportsMonotonicConstraints
(new in v2.11) boolean, whether this model supports enforcing montonic constraints
- id
Model ID
- isStarred
(bool) (New in version v2.13) whether the model has been starred
- predictionThreshold
(float) (New in version v2.13) threshold used for binary classification in predictions.
- predictionThresholdReadOnly
(boolean) (New in version v2.13) indicates whether modification of a predictions threshold is forbidden. Threshold modification is forbidden once a model has had a deployment created or predictions made via the dedicated prediction API.
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def advancedTuning(description: String)(implicit client: DataRobotClient): AdvancedTuningSession
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val blueprintId: String
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val featurelistId: String
- val featurelistName: String
- def getCapabilities()(implicit client: DataRobotClient): (Map[String, Boolean], Map[String, String])
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def getCrossValidationScores()(implicit client: DataRobotClient): Map[String, Map[String, Map[String, Double]]]
- def getFeatureEffects(source: String = "validation", backtestIndex: Option[String] = None)(implicit client: DataRobotClient): FeatureEffects
- def getFeatureEffectsMetaData()(implicit client: DataRobotClient): String
- def getFeatureFit(source: String = "validation", backtestIndex: Option[String] = None)(implicit client: DataRobotClient): FeatureFits
- def getFeatureFitMetaData()(implicit client: DataRobotClient): String
- def getFeatureImpact()(implicit client: DataRobotClient): FeatureImpacts
- def getHyperParameters()(implicit client: DataRobotClient): Map[String, List[Map[String, Any]]]
- def getLiftChart(source: enums.Source.Value)(implicit client: DataRobotClient): LiftChart
- def getLiftCharts()(implicit client: DataRobotClient): Map[String, List[LiftChart]]
- def getMissingValueReport()(implicit client: DataRobotClient): List[Map[_ <: String, Any]]
- def getModelBlueprintChart()(implicit client: DataRobotClient): Graph[BlueprintNode, LDiEdge]
- def getModelCoefficients()(implicit client: DataRobotClient): ModelCoefficients
- def getResiduals()(implicit client: DataRobotClient): Map[String, Map[String, ResidualData]]
- def getRocCurve(source: enums.Source.Value)(implicit client: DataRobotClient): RocCurve
- def getRocCurves()(implicit client: DataRobotClient): Map[String, List[RocCurve]]
- def getScoringCode(destination: Option[String] = None, sourceCode: Boolean = false)(implicit client: DataRobotClient): Unit
- def getWordCloud()(implicit client: DataRobotClient): WordCloud
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- val id: String
- val isFrozen: Boolean
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- var isStarred: Boolean
- val metrics: Map[String, Metric]
- val modelCategory: String
- val modelType: String
- val monotonicDecreasingFeaturelistId: Option[String]
- val monotonicIncreasingFeaturelistId: Option[String]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- var predictionThreshold: Option[Double]
- var predictionThresholdReadOnly: Option[Boolean]
- val processes: Array[String]
- val projectId: String
- def requestAndGetFeatureEffects(source: String = "validation", backtestIndex: Option[String] = None)(implicit client: DataRobotClient): FeatureEffects
- def requestAndGetFeatureFit(source: String = "validation", backtestIndex: Option[String] = None)(implicit client: DataRobotClient): FeatureFits
- def requestAndGetFeatureImpact(maxWait: Int = 600000)(implicit client: DataRobotClient): AnyRef
- def requestFeatureEffects(backtestIndex: Option[String] = None)(implicit client: DataRobotClient): Job
- def requestFeatureFit(backtestIndex: Option[String] = None)(implicit client: DataRobotClient): Job
- def requestFeatureImpact()(implicit client: DataRobotClient): Job
- def requestFrozenModel(samplePct: Option[Float] = None, trainingRowCount: Option[Int] = None)(implicit client: DataRobotClient): ModelJob
- def requestPredictions(datasetId: String, includePredictionIntervals: Option[Boolean] = None, predictionIntervalSize: Option[Int] = None, forecastPoint: Option[String] = None, predictionsStartDate: Option[String] = None, predictionsEndDate: Option[String] = None)(implicit client: DataRobotClient): PredictJob
- def runCrossValidation()(implicit client: DataRobotClient): Job
- val samplePct: Option[Double]
- def starModel()(implicit client: DataRobotClient): Model
- val supportsMonotonicConstraints: Option[Boolean]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Model → AnyRef → Any
- def toggleStar(starred: Boolean)(implicit client: DataRobotClient): Model
- val trainingDuration: Option[String]
- val trainingEndDate: Option[String]
- val trainingRowCount: Option[Int]
- val trainingStartDate: Option[String]
- def unstarModel()(implicit client: DataRobotClient): Model
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated