Modifier and Type | Method and Description |
---|---|
static boolean |
GradientCheckUtil.checkGradientsPretrainLayer(Layer layer,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray input,
int rngSeed)
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
|
Modifier and Type | Interface and Description |
---|---|
interface |
IOutputLayer |
interface |
RecurrentLayer |
Modifier and Type | Method and Description |
---|---|
void |
LayerConstraint.applyConstraint(Layer layer,
int iteration,
int epoch)
Apply a given constraint to a layer at each iteration
in the provided epoch, after parameters have been updated.
|
Modifier and Type | Method and Description |
---|---|
void |
BaseConstraint.applyConstraint(Layer layer,
int iteration,
int epoch) |
Modifier and Type | Method and Description |
---|---|
Layer |
ActivationLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
AutoEncoder.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
BatchNormalization.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
CenterLossOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Cnn3DLossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
CnnLossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Convolution1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Convolution3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
ConvolutionLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Deconvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Deconvolution3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
DenseLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
DepthwiseConvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
DropoutLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
EmbeddingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
EmbeddingSequenceLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
GlobalPoolingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
GravesBidirectionalLSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType)
Deprecated.
|
Layer |
GravesLSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType)
Deprecated.
|
abstract Layer |
Layer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
LocalResponseNormalization.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
LossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
LSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
OutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
PReLULayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
RnnLossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
RnnOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SeparableConvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SpaceToBatchLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SpaceToDepthLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Subsampling1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Subsampling3DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SubsamplingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Upsampling1D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Upsampling2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Upsampling3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
ZeroPadding1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
ZeroPadding3DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
ZeroPaddingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
Cropping1D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Cropping2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
Cropping3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
ElementWiseMultiplicationLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
FrozenLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
FrozenLayerWithBackprop.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
RepeatVector.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
Yolo2OutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
Bidirectional.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
LastTimeStep.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SimpleRnn.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
TimeDistributed.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
abstract Layer |
AbstractSameDiffLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SameDiffLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
SameDiffOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
MaskLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Layer |
MaskZeroLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
VariationalAutoencoder.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
OCNNOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
DropConnect.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
IWeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying weight noise
|
INDArray |
WeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Field and Description |
---|---|
protected Layer[] |
ComputationGraph.layers
A list of layers.
|
Modifier and Type | Method and Description |
---|---|
Layer |
ComputationGraph.getLayer(int idx)
Get the layer by the number of that layer, in range 0 to getNumLayers()-1
NOTE: This is different from the internal GraphVertex index for the layer
|
Layer |
ComputationGraph.getLayer(String name)
Get a given layer by name.
|
Layer[] |
ComputationGraph.getLayers()
Get all layers in the ComputationGraph
|
Layer |
ComputationGraph.getOutputLayer(int outputLayerIdx)
Get the specified output layer, by index.
|
Modifier and Type | Method and Description |
---|---|
Layer |
BaseWrapperVertex.getLayer() |
Layer |
GraphVertex.getLayer()
Get the Layer (if any).
|
Modifier and Type | Method and Description |
---|---|
Layer |
ElementWiseVertex.getLayer() |
Layer |
InputVertex.getLayer() |
Layer |
L2NormalizeVertex.getLayer() |
Layer |
L2Vertex.getLayer() |
Layer |
LayerVertex.getLayer() |
Layer |
MergeVertex.getLayer() |
Layer |
PoolHelperVertex.getLayer() |
Layer |
PreprocessorVertex.getLayer() |
Layer |
ReshapeVertex.getLayer() |
Layer |
ScaleVertex.getLayer() |
Layer |
ShiftVertex.getLayer() |
Layer |
StackVertex.getLayer() |
Layer |
SubsetVertex.getLayer() |
Layer |
UnstackVertex.getLayer() |
Constructor and Description |
---|
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex,
DataType dataType)
Create a network input vertex:
|
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
Layer |
DuplicateToTimeSeriesVertex.getLayer() |
Layer |
LastTimeStepVertex.getLayer() |
Layer |
ReverseTimeSeriesVertex.getLayer() |
Modifier and Type | Class and Description |
---|---|
class |
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradients
|
class |
ActivationLayer |
class |
BaseLayer<LayerConfT extends BaseLayer>
A layer with parameters
|
class |
BaseOutputLayer<LayerConfT extends BaseOutputLayer> |
class |
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> |
class |
DropoutLayer |
class |
FrozenLayer |
class |
FrozenLayerWithBackprop |
class |
LossLayer |
class |
OutputLayer |
class |
RepeatVector |
Modifier and Type | Method and Description |
---|---|
Layer |
BaseLayer.clone() |
Layer |
FrozenLayer.getInsideLayer() |
Layer |
FrozenLayerWithBackprop.getInsideLayer() |
Constructor and Description |
---|
FrozenLayer(Layer insideLayer) |
FrozenLayerWithBackprop(Layer insideLayer) |
Modifier and Type | Class and Description |
---|---|
class |
Cnn3DLossLayer |
class |
CnnLossLayer |
class |
Convolution1DLayer |
class |
Convolution3DLayer |
class |
ConvolutionLayer |
class |
Cropping1DLayer |
class |
Cropping2DLayer |
class |
Cropping3DLayer |
class |
Deconvolution2DLayer |
class |
Deconvolution3DLayer |
class |
DepthwiseConvolution2DLayer |
class |
SeparableConvolution2DLayer |
class |
SpaceToBatch |
class |
SpaceToDepth |
class |
ZeroPadding1DLayer |
class |
ZeroPadding3DLayer |
class |
ZeroPaddingLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
Cropping1DLayer.clone() |
Layer |
Cropping2DLayer.clone() |
Layer |
Cropping3DLayer.clone() |
Layer |
ZeroPadding1DLayer.clone() |
Layer |
ZeroPadding3DLayer.clone() |
Layer |
ZeroPaddingLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
Subsampling1DLayer |
class |
Subsampling3DLayer |
class |
SubsamplingLayer |
Modifier and Type | Class and Description |
---|---|
class |
Upsampling1D |
class |
Upsampling2D |
class |
Upsampling3D |
Modifier and Type | Class and Description |
---|---|
class |
PReLU |
Modifier and Type | Class and Description |
---|---|
class |
AutoEncoder |
Modifier and Type | Class and Description |
---|---|
class |
DenseLayer |
Modifier and Type | Class and Description |
---|---|
class |
ElementWiseMultiplicationLayer |
Modifier and Type | Class and Description |
---|---|
class |
EmbeddingLayer |
class |
EmbeddingSequenceLayer |
Modifier and Type | Method and Description |
---|---|
FwdPassReturn |
MKLDNNLSTMHelper.activate(Layer layer,
NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray inputWeights,
INDArray biases,
boolean training,
INDArray prevOutputActivations,
INDArray prevMemCellState,
boolean forBackprop,
boolean forwards,
String inputWeightKey,
INDArray maskArray,
boolean hasPeepholeConnections,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Class and Description |
---|---|
class |
BatchNormalization |
class |
LocalResponseNormalization |
Modifier and Type | Method and Description |
---|---|
Layer |
LocalResponseNormalization.clone() |
Modifier and Type | Class and Description |
---|---|
class |
Yolo2OutputLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
Yolo2OutputLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
OCNNOutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
GlobalPoolingLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
GlobalPoolingLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
BaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer> |
class |
BidirectionalLayer |
class |
GravesBidirectionalLSTM |
class |
GravesLSTM
Deprecated.
|
class |
LastTimeStepLayer |
class |
LSTM |
class |
MaskZeroLayer |
class |
RnnLossLayer |
class |
RnnOutputLayer |
class |
SimpleRnn |
class |
TimeDistributedLayer |
Modifier and Type | Method and Description |
---|---|
FwdPassReturn |
LSTMHelper.activate(Layer layer,
NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray inputWeights,
INDArray biases,
boolean training,
INDArray prevOutputActivations,
INDArray prevMemCellState,
boolean forBackprop,
boolean forwards,
String inputWeightKey,
INDArray maskArray,
boolean hasPeepholeConnections,
LayerWorkspaceMgr workspaceMgr) |
Constructor and Description |
---|
BidirectionalLayer(@NonNull NeuralNetConfiguration conf,
@NonNull Layer fwd,
@NonNull Layer bwd,
@NonNull INDArray paramsView) |
BidirectionalLayer(@NonNull NeuralNetConfiguration conf,
@NonNull Layer fwd,
@NonNull Layer bwd,
@NonNull INDArray paramsView) |
LastTimeStepLayer(@NonNull Layer underlying) |
MaskZeroLayer(@NonNull Layer underlying,
double maskingValue) |
TimeDistributedLayer(Layer underlying,
RNNFormat rnnDataFormat) |
Modifier and Type | Class and Description |
---|---|
class |
SameDiffLayer |
class |
SameDiffOutputLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
SameDiffLayer.clone() |
Layer |
SameDiffOutputLayer.clone() |
Layer |
SameDiffGraphVertex.getLayer() |
Modifier and Type | Class and Description |
---|---|
class |
CenterLossOutputLayer |
Modifier and Type | Class and Description |
---|---|
class |
MaskLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
MaskLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
VariationalAutoencoder |
Modifier and Type | Class and Description |
---|---|
class |
BaseWrapperLayer |
Modifier and Type | Field and Description |
---|---|
protected Layer |
BaseWrapperLayer.underlying |
Constructor and Description |
---|
BaseWrapperLayer(@NonNull Layer underlying) |
Modifier and Type | Class and Description |
---|---|
class |
MultiLayerNetwork |
Modifier and Type | Field and Description |
---|---|
protected Layer[] |
MultiLayerNetwork.layers |
Modifier and Type | Field and Description |
---|---|
protected LinkedHashMap<String,Layer> |
MultiLayerNetwork.layerMap |
Modifier and Type | Method and Description |
---|---|
Layer |
MultiLayerNetwork.getLayer(int i) |
Layer |
MultiLayerNetwork.getLayer(String name) |
Layer[] |
MultiLayerNetwork.getLayers() |
Layer |
MultiLayerNetwork.getOutputLayer()
Get the output layer - i.e., the last layer in the netwok
|
Modifier and Type | Method and Description |
---|---|
void |
MultiLayerNetwork.setLayers(Layer[] layers) |
Constructor and Description |
---|
LayerUpdater(Layer layer) |
LayerUpdater(Layer layer,
INDArray updaterState) |
Copyright © 2021. All rights reserved.