object Dglm extends Serializable
- Alphabetic
- By Inheritance
- Dglm
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beta(mod: Dlm): Dglm
Construct a DGLM with Beta distributed observations, with variance < mean (1 - mean)
-
def
beta(mean: Double, variance: Double): ContinuousDistr[Double]
A beta distribution parameterised by the mean and variance
A beta distribution parameterised by the mean and variance
- mean
the mean of the resulting beta distribution
- variance
the variance of the beta distribution
- returns
a beta distribution
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- def diagonal(m: DenseMatrix[Double]): Vector[Double]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def expit(x: Double): Double
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
forecastParticles(mod: Dglm, xt: Vector[DenseVector[Double]], p: DlmParameters, ys: Vector[Data]): Vector[(Double, Vector[DenseVector[Double]], Vector[DenseVector[Double]])]
Forecast a DGLM from a particle cloud representing the latent state at the end of the observations
Forecast a DGLM from a particle cloud representing the latent state at the end of the observations
- mod
the model
- xt
the particle cloud representing the latent state
- p
the parameters of the model
- returns
the time, mean observation and variance of the observation
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def initialiseState(model: Dglm, params: DlmParameters): (Data, DenseVector[Double])
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
logisticFunction(upper: Double)(number: Double): Double
Logistic function to transform the number onto a range between 0 and upper
Logistic function to transform the number onto a range between 0 and upper
- upper
the upper limit of the logistic function
- number
the number to be transformed
- returns
a number between 0 and upper
- def logit(p: Double): Double
- def meanAndIntervals(prob: Double)(samples: Seq[DenseVector[Double]]): (DenseVector[Double], Array[Double], Array[Double])
-
def
meanCovSamples(samples: Seq[DenseVector[Double]]): (DenseVector[Double], DenseMatrix[Double])
Calculate the mean and covariance of a sequence of DenseVectors
- def medianAndIntervals(prob: Double)(samples: Seq[DenseVector[Double]]): (Array[Double], Array[Double], Array[Double])
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
negativeBinomial(mod: Dlm): Dglm
Negative Binomial Model for overdispersed count data
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def observation(model: Dglm, params: DlmParameters, state: DenseVector[Double], time: Double): Rand[DenseVector[Double]]
-
def
poisson(mod: Dlm): Dglm
Construct a DGLM with Poisson distributed observations
- def simStep(model: Dglm, params: DlmParameters)(state: DenseVector[Double], time: Double, dt: Double): Rand[(Data, DenseVector[Double])]
-
def
simulateRegular(model: Dglm, params: DlmParameters, dt: Double): Process[(Data, DenseVector[Double])]
Simulate from a model using regular steps
-
def
stepOu(model: Dglm, params: DlmParameters)(state: DenseVector[Double], dt: Double): Rand[DenseVector[Double]]
Advance the a multivariate state independently according to the ornstein uhlenbeck process
- def stepState(model: Dglm, params: DlmParameters)(state: DenseVector[Double], dt: Double): Rand[DenseVector[Double]]
-
def
studentT(nu: Int, mod: Dlm): Dglm
Define a DGLM with Student's t observation errors
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
zip(mod: Dlm): Dglm
Zero inflated Poisson DGLM, the observation variance is the logit of the probability of observing a zero
Zero inflated Poisson DGLM, the observation variance is the logit of the probability of observing a zero
- mod
the DLM model specifying the latent-state