object Dglm extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dglm
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def beta(mod: Dlm): Dglm

    Construct a DGLM with Beta distributed observations, with variance < mean (1 - mean)

  6. def beta(mean: Double, variance: Double): ContinuousDistr[Double]

    A beta distribution parameterised by the mean and variance

    A beta distribution parameterised by the mean and variance

    mean

    the mean of the resulting beta distribution

    variance

    the variance of the beta distribution

    returns

    a beta distribution

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. def diagonal(m: DenseMatrix[Double]): Vector[Double]
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. def expit(x: Double): Double
  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def forecastParticles(mod: Dglm, xt: Vector[DenseVector[Double]], p: DlmParameters, ys: Vector[Data]): Vector[(Double, Vector[DenseVector[Double]], Vector[DenseVector[Double]])]

    Forecast a DGLM from a particle cloud representing the latent state at the end of the observations

    Forecast a DGLM from a particle cloud representing the latent state at the end of the observations

    mod

    the model

    xt

    the particle cloud representing the latent state

    p

    the parameters of the model

    returns

    the time, mean observation and variance of the observation

  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. def initialiseState(model: Dglm, params: DlmParameters): (Data, DenseVector[Double])
  17. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  18. def logisticFunction(upper: Double)(number: Double): Double

    Logistic function to transform the number onto a range between 0 and upper

    Logistic function to transform the number onto a range between 0 and upper

    upper

    the upper limit of the logistic function

    number

    the number to be transformed

    returns

    a number between 0 and upper

  19. def logit(p: Double): Double
  20. def meanAndIntervals(prob: Double)(samples: Seq[DenseVector[Double]]): (DenseVector[Double], Array[Double], Array[Double])
  21. def meanCovSamples(samples: Seq[DenseVector[Double]]): (DenseVector[Double], DenseMatrix[Double])

    Calculate the mean and covariance of a sequence of DenseVectors

  22. def medianAndIntervals(prob: Double)(samples: Seq[DenseVector[Double]]): (Array[Double], Array[Double], Array[Double])
  23. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. def negativeBinomial(mod: Dlm): Dglm

    Negative Binomial Model for overdispersed count data

  25. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  26. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  27. def observation(model: Dglm, params: DlmParameters, state: DenseVector[Double], time: Double): Rand[DenseVector[Double]]
  28. def poisson(mod: Dlm): Dglm

    Construct a DGLM with Poisson distributed observations

  29. def simStep(model: Dglm, params: DlmParameters)(state: DenseVector[Double], time: Double, dt: Double): Rand[(Data, DenseVector[Double])]
  30. def simulateRegular(model: Dglm, params: DlmParameters, dt: Double): Process[(Data, DenseVector[Double])]

    Simulate from a model using regular steps

  31. def stepOu(model: Dglm, params: DlmParameters)(state: DenseVector[Double], dt: Double): Rand[DenseVector[Double]]

    Advance the a multivariate state independently according to the ornstein uhlenbeck process

  32. def stepState(model: Dglm, params: DlmParameters)(state: DenseVector[Double], dt: Double): Rand[DenseVector[Double]]
  33. def studentT(nu: Int, mod: Dlm): Dglm

    Define a DGLM with Student's t observation errors

  34. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  35. def toString(): String
    Definition Classes
    AnyRef → Any
  36. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  39. def zip(mod: Dlm): Dglm

    Zero inflated Poisson DGLM, the observation variance is the logit of the probability of observing a zero

    Zero inflated Poisson DGLM, the observation variance is the logit of the probability of observing a zero

    mod

    the DLM model specifying the latent-state

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped