o

dlm.core.model

Smoothing

object Smoothing

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Smoothing
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class SmoothingState(time: Double, mean: DenseVector[Double], covariance: DenseMatrix[Double], at1: DenseVector[Double], rt1: DenseMatrix[Double]) extends Product with Serializable

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def backwardStepOu(p: SvParameters)(kfState: KfState, s: SamplingState): SamplingState

    Perform a backward step of FFBS for the OU process

  6. def backwardsSmoother(mod: Dlm)(kfState: Vector[KfState]): Vector[SmoothingState]

    Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time

    Learn the distribution of the latent state (the smoothing distribution) p(x_{1:T} | y_{1:T}) of a fully specified DLM with observations available for all time

    mod

    a DLM model specification

    kfState

    the output of a Kalman Filter

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def ffbs(mod: Dlm, observations: Vector[Data], advState: (KfState, Double) ⇒ KfState, backStep: (KfState, SamplingState) ⇒ SamplingState, p: DlmParameters): Rand[Vector[SamplingState]]

    Forward filtering backward sampling

    Forward filtering backward sampling

    mod

    the DLM

    observations

    a list of observations

    advState

    the a priori state update in a Kalman Filter

    backStep

    the backward step of the backward sampler

    p

    parametes of the DLM

  11. def ffbsDlm(mod: Dlm, ys: Vector[Data], p: DlmParameters): Rand[Vector[SamplingState]]

    Forward filtering backward sampling for a DLM

    Forward filtering backward sampling for a DLM

    mod

    the DLM

    p

    parametes of the DLM

  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def initialise(filtered: Vector[KfState]): SamplingState
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. def sample(mod: Dlm, filtered: Vector[KfState], backStep: (KfState, SamplingState) ⇒ SamplingState): Vector[SamplingState]

    Perform backward sampling

  21. def sampleArray[FS, S, M](filtered: Array[FS], initialise: S, backStep: (FS, S) ⇒ S)(implicit ct: ClassTag[S]): Array[S]

    Perform backward sampling using a cfor loop

  22. def sampleDlm(mod: Dlm, filtered: Vector[KfState], w: DenseMatrix[Double]): Vector[SamplingState]

    Perform backward sampling for a DLM

  23. def smoothStep(mod: Dlm)(kfState: KfState, state: SmoothingState): SmoothingState

    A single step in the backwards smoother Requires that a Kalman Filter has been run on the model

    A single step in the backwards smoother Requires that a Kalman Filter has been run on the model

    mod

    a DLM model specification

    state

    the state at time t + 1

  24. def step(mod: Dlm, w: DenseMatrix[Double])(kfState: KfState, state: SamplingState): SamplingState

    Perform a single step of the Backward Sampling algorithm for a DLM

    Perform a single step of the Backward Sampling algorithm for a DLM

    mod

    a DLM

    w

    the system noise covariance matrix

    kfState

    the state at the Kalman Filter at time t

    state

    the sampling state at time t + 1

    returns

    a sample from the state

  25. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  26. def toString(): String
    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped