o

dlm.core.model

DlmFsvSystem

object DlmFsvSystem

Fit a DLM with the system variance modelled using an FSV model and latent log volatility modelled using continuous time Ornstein-Uhlenbeck process

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DlmFsvSystem
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State(p: DlmFsvParameters, theta: Vector[SamplingState], factors: Vector[(Double, Option[DenseVector[Double]])], volatility: Vector[SamplingState]) extends Product with Serializable

    The state of the Gibbs Sampler

    The state of the Gibbs Sampler

    p

    the current parameters of the MCMC

    theta

    the current state of the mean latent state (DLM state) of the DLM FSV model

    factors

    the factors of the observation model

    volatility

    the log-volatility of the system variance

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def calculateVariance(alphas: Vector[SamplingState], beta: DenseMatrix[Double], v: DenseMatrix[Double]): Vector[DenseMatrix[Double]]

    Calculate the time dependent variance from the log-volatility and factor loading matrix

    Calculate the time dependent variance from the log-volatility and factor loading matrix

    alphas

    the time series of log-volatility

    beta

    the factor loading matrix

    v

    the diagonal observation covariance

  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. def emptyParams(vDim: Int, wDim: Int, k: Int): DlmFsvParameters
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def factorState(theta: Vector[SamplingState], g: (Double) ⇒ DenseMatrix[Double]): Vector[Data]

    Center the state by taking away the dynamic mean of the series

    Center the state by taking away the dynamic mean of the series

    theta

    the state representing the evolving mean of the process

    g

    the system matrix: a function from time to a dense matrix

    returns

    a vector containing the x(t_i) - g(dt_i)x(t_{i-1})

  11. def ffbs(model: Dlm, ys: Vector[Data], p: DlmParameters, ws: Vector[DenseMatrix[Double]]): Rand[Vector[SamplingState]]

    Perform forward filtering backward sampling using a time dependent state covariance matrix

  12. def ffbsSvd(model: Dlm, ys: Vector[Data], p: DlmParameters, ws: Vector[DenseMatrix[Double]]): Rand[Vector[SamplingState]]

    Perform forward filtering backward sampling using a time dependent state covariance matrix updating the SVD of the parameters

  13. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. def forecast(dlm: Dlm, p: DlmFsvParameters, ys: Vector[Data]): Traversable[KfState]

    Perform a forecast online using the DLM FSV Model Given a collection of parameters sampled from the parameter posterior

    Perform a forecast online using the DLM FSV Model Given a collection of parameters sampled from the parameter posterior

    dlm

    a dlm model

    p

    DLM FSV Parameters

  15. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  17. def initialise(params: DlmFsvParameters, ys: Vector[Data], dlm: Dlm): State

    Initialise the state of the DLM FSV system Model by initialising variance matrices for the system, performing FFBS for the mean state

    Initialise the state of the DLM FSV system Model by initialising variance matrices for the system, performing FFBS for the mean state

    params

    parameters of the DLM FSV system model

    ys

    time series of observations

    dlm

    the description of the

  18. def initialiseOu(params: DlmFsvParameters, ys: Vector[Data], dlm: Dlm): State

    Initialise the state of the DLM FSV system Model by initialising variance matrices for the system, performing FFBS for the mean state

    Initialise the state of the DLM FSV system Model by initialising variance matrices for the system, performing FFBS for the mean state

    params

    parameters of the DLM FSV system model

    ys

    time series of observations

    dlm

    the description of the

  19. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  23. def paramsFromList(vDim: Int, wDim: Int, k: Int)(l: List[Double]): DlmFsvParameters

    Read DLM FSV parameters with a factor structure on the system matrix from a list of doubles

    Read DLM FSV parameters with a factor structure on the system matrix from a list of doubles

    vDim

    the dimension of the observation matrix

    wDim

    the dimension of the latent-state

    k

    the number of factors

    l

    a list of doubles representing parameter from a DLM FSV system model

  24. def sample(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Gaussian, priorMu: Gaussian, priorSigma: InverseGamma, priorV: InverseGamma, ys: Vector[Data], dlm: Dlm, initP: DlmFsvParameters): Process[State]
  25. def sampleOu(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Beta, priorMu: Gaussian, priorSigma: InverseGamma, priorV: InverseGamma, ys: Vector[Data], dlm: Dlm, initP: DlmFsvParameters): Process[State]
  26. def sampleStateAr(ys: Vector[Data], dlm: Dlm, params: DlmFsvParameters): Process[State]

    Sample the factors, mean state and volatility while keeping the parameters constant

  27. def sampleStep(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Gaussian, priorMu: Gaussian, priorSigma: InverseGamma, priorV: InverseGamma, ys: Vector[Data], dlm: Dlm)(s: State): Rand[State]

    Perform a single step of the Gibbs Sampling algorithm for the DLM FSV where the system variance is modelled using FSV model

  28. def sampleStepOu(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Beta, priorMu: Gaussian, priorSigma: InverseGamma, priorV: InverseGamma, ys: Vector[Data], dlm: Dlm)(s: State): Rand[State]

    Perform a single step of the Gibbs Sampling algorithm for the DLM FSV where the system variance is modelled using FSV model

  29. def simStep(time: Double, x: DenseVector[Double], a0w: Vector[Double], dlm: Dlm, p: DlmFsvParameters, dt: Double, dimObs: Int): Rand[(Data, DenseVector[Double], Vector[Double])]

    Simulate a single step in the DLM FSV model

    Simulate a single step in the DLM FSV model

    time

    the time of the next observation

    x

    the state of the DLM

    a0w

    the latent log-volatility of the system variance

    dlm

    the DLM model to use for the evolution

    p

    the parameters of the DLM and FSV Model

    dt

    the time difference between successive observations

    returns

    the next simulated value

  30. def simulateRegular(dlm: Dlm, p: DlmFsvParameters, dimObs: Int): Process[(Data, DenseVector[Double], Vector[Double])]

    Simulate from a DLM Factor Stochastic Volatility Model

    Simulate from a DLM Factor Stochastic Volatility Model

    dlm

    the dlm model

    p

    dlm fsv model parameters

    returns

    a vector of observations

  31. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  32. def toString(): String
    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped