o

dlm.core.model

StudentT

object StudentT

Fit a state space model with a latent Gaussian state and a Student's t observation distribution using the fact that the student's t-distribution is an Inverse Gamma mixture of normals

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StudentT
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class PmmhState(ll: Double, p: DlmParameters, nu: Int, accepted: Int) extends Product with Serializable
  2. case class State(p: DlmParameters, variances: Vector[Double], nu: Int, state: Vector[SamplingState], accepted: Int) extends Product with Serializable

    The state of the Markov chain for the Student's t-distribution gibbs sampler

    The state of the Markov chain for the Student's t-distribution gibbs sampler

    p

    the DLM parameters

    variances

    the variances for each of the observations V_t

    nu

    the degrees of freedom of the Student's t-distribution

    state

    the currently sampled state using FFBS

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def filter(mod: Dlm, variances: Vector[Double], observations: Vector[Data], params: DlmParameters): Vector[KfState]
  9. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def interpolate(data: Vector[Data], mod: Dglm, nu: Int, p: DlmParameters): Process[State]
  13. def interpolateStep(data: Vector[Data], mod: Dglm, p: DlmParameters): (State) ⇒ Rand[State]

    Sample the latent state for the student's t model

  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. def ll(ys: Vector[Data], xs: Vector[SamplingState], mod: Dglm, p: DlmParameters)(nu: Int): Double

    Calculate the log-likelihood of the student's t-distributed model

    Calculate the log-likelihood of the student's t-distributed model

    ys

    a vector of observations

    xs

    a sample from the latent-state of the student's t model

    mod

    the Student t DGLM

    p

    the

  16. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. def sample(data: Vector[Data], priorW: InverseGamma, priorNu: DiscreteDistr[Int], propNu: (Int) ⇒ Rand[Int], propNuP: (Int, Int) ⇒ Double, mod: Dglm, params: DlmParameters): Process[State]

    Perform Gibbs Sampling for the Student t-distributed model

    Perform Gibbs Sampling for the Student t-distributed model

    priorW

    the prior distribution of the system noise matrix

    mod

    the DGLM representing the Student's t model

    params

    the initial parameters

  20. def sampleNu(prop: (Int) ⇒ Rand[Int], propP: (Int, Int) ⇒ Double, prior: (Int) ⇒ Double, likelihood: (Int) ⇒ Double): (Int) ⇒ Rand[(Int, Boolean)]

    Sample the degrees of freedom for the observation distribution

  21. def samplePmmh(data: Vector[Data], priorW: ContinuousDistr[Double], priorV: ContinuousDistr[Double], priorNu: DiscreteDistr[Int], prop: (DlmParameters) ⇒ Rand[DlmParameters], propNu: (Int) ⇒ Rand[Int], propNuP: (Int, Int) ⇒ Double, model: Dlm, n: Int, initP: DlmParameters, initNu: Int): Process[PmmhState]

    Particle Marginal Metropolis Hastings for the Student's t-distributed state space model

  22. def sampleScaleT(dof: Int, variances: Vector[Double]): Gamma

    Sample the (square of the) scale of the Student's t distribution

    Sample the (square of the) scale of the Student's t distribution

    dof

    the degrees of freedom of the Student's t observation distribution

  23. def sampleState(variances: Vector[Double], mod: Dlm, observations: Vector[Data], params: DlmParameters): Rand[Vector[SamplingState]]

    Sample the state, incorporating the drawn variances for each observation

    Sample the state, incorporating the drawn variances for each observation

    variances

    the sampled auxiliary parameters

    mod

    the DLM

    params

    the parameters of the DLM model

  24. def sampleVariances(ys: Vector[Data], f: (Double) ⇒ DenseMatrix[Double], dof: Int, theta: Vector[SamplingState], p: DlmParameters): Vector[Double]

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    ys

    an array of observations of length N

    f

    the observation matrix

    dof

    the degrees of freedom of the Student's t-distribution

    returns

    a Rand distribution over the list of N variances

  25. def step(data: Vector[Data], priorW: InverseGamma, priorNu: DiscreteDistr[Int], propNu: (Int) ⇒ Rand[Int], propNuP: (Int, Int) ⇒ Double, mod: Dglm, p: DlmParameters): (State) ⇒ Rand[State]

    A single step of the Student t-distribution Gibbs Sampler

  26. def stepPmmh(priorW: ContinuousDistr[Double], priorV: ContinuousDistr[Double], priorNu: DiscreteDistr[Int], prop: (DlmParameters) ⇒ Rand[DlmParameters], propNu: (Int) ⇒ Rand[Int], propNuP: (Int, Int) ⇒ Double, ll: (DlmParameters, Int) ⇒ Double): (PmmhState) ⇒ Rand[PmmhState]

    Perform a single step of the PMMH algorithm for the Student's t distributed state space model

  27. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  28. def toString(): String
    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped