o

dlm.core.model

DlmFsv

object DlmFsv

Model a heteroskedastic time series DLM by modelling the log-covariance of the observation variance as latent-factors

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DlmFsv
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State(p: DlmFsvParameters, theta: Vector[SamplingState], factors: Vector[(Double, Option[DenseVector[Double]])], volatility: Vector[SamplingState]) extends Product with Serializable

    The state of the Gibbs Sampler

    The state of the Gibbs Sampler

    p

    the current parameters of the MCMC

    theta

    the current state of the mean latent state (DLM state) of the DLM FSV model

    factors

    the current state of the latent factors of the volatility

    volatility

    the current state of the time varying variance of the observations

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def buildDlmState(s: State): GibbsSampling.State

    Transform the state of this sampler into the state for the DLM

  6. def buildFactorState(s: State): FactorSv.State

    Transform the state of this sampler into the state for the FSV model

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def factorObs(ys: Vector[Data], theta: Vector[SamplingState], f: (Double) ⇒ DenseMatrix[Double]): Vector[Data]

    Center the observations to taking away the dynamic mean of the series

    Center the observations to taking away the dynamic mean of the series

    theta

    the state representing the evolving mean of the process

    f

    the observation matrix: a function from time to a dense matrix

    returns

    a vector containing the difference between the observations and dynamic mean

  11. def ffbsSvd(model: Dlm, ys: Vector[Data], p: DlmParameters, vs: Vector[DenseMatrix[Double]]): Rand[Vector[SamplingState]]

    Perform forward filtering backward sampling using a time dependent observation variance and the SVD Filter

    Perform forward filtering backward sampling using a time dependent observation variance and the SVD Filter

    model

    a DLM model

    ys

    the time series of observations

    p

    DLM parameters containing sqrtW for SVD filter / sampler

    vs

    a vector containing V_t the time dependent variances

  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def forecast(dlm: Dlm, p: DlmFsvParameters, ys: Vector[Data]): Traversable[KfState]

    Perform a one-step forecast

  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. def initialiseState(dlm: Dlm, ys: Vector[Data], params: DlmFsvParameters, p: Int, k: Int): State
  17. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  21. def obsVolatility(as: Vector[(Double, DenseVector[Double])], xs: Vector[(Double, DenseVector[Double])], dlm: Dlm, p: DlmFsvParameters): Vector[(Double, DenseVector[Double])]

    Simulate observations given realisations of the dlm state and log-volatility of the factors

    Simulate observations given realisations of the dlm state and log-volatility of the factors

    as

    the log-volatility

    xs

    the state of the DLM

    dlm

    a dlm model

    p

    parameters of the DLM FSV model

  22. def observation(fs: Vector[(Double, Option[DenseVector[Double]])], theta: Vector[(Double, DenseVector[Double])], dlm: Dlm, p: DlmFsvParameters): Vector[(Double, Option[DenseVector[Double]])]

    The observation model of the DLM FSV given the factors and the state

    The observation model of the DLM FSV given the factors and the state

    fs

    sampled factors

    theta

    the state of the dlm

    dlm

    the dlm model to use

    returns

    a vector of observations

  23. def quantile[A](xs: Seq[A], prob: Double)(implicit arg0: Ordering[A]): A

    Given a sequence of elements (typically draws from a distribution) with an implicit ordering select credible intervals

    Given a sequence of elements (typically draws from a distribution) with an implicit ordering select credible intervals

    xs

    a collection of elements

    prob

    the interval to select from the sample (0, 1)

    returns

    the sample corresponding to the prob credible interval

  24. def sample(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Gaussian, priorMu: Gaussian, priorSigma: InverseGamma, priorW: InverseGamma, observations: Vector[Data], dlm: Dlm, initP: DlmFsvParameters): Process[State]

    MCMC algorithm for DLM FSV with observation matrix having factor structure

  25. def sampleOu(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Gaussian, priorMu: Gaussian, priorSigma: InverseGamma, priorW: InverseGamma, observations: Vector[Data], dlm: Dlm, initP: DlmFsvParameters): Process[State]
  26. def sampleStateAr(ys: Vector[Data], dlm: Dlm, params: DlmFsvParameters): Process[State]

    Sample the factors, mean state and volatility while keeping the parameters constant

  27. def sampleStateOu(ys: Vector[Data], dlm: Dlm, params: DlmFsvParameters): Process[State]

    Sample the factors, mean state and volatility while keeping the parameters constant

  28. def sampleStep(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Gaussian, priorMu: Gaussian, priorSigma: InverseGamma, priorW: InverseGamma, observations: Vector[Data], dlm: Dlm, p: Int, k: Int)(s: State): Rand[State]

    Perform a single step of the Gibbs Sampling algorithm for the DLM FSV model

  29. def simStep(time: Double, x: DenseVector[Double], a: Vector[Double], dlm: Dlm, p: DlmFsvParameters): Rand[(Data, DenseVector[Double], Vector[Double])]

    Simulate a single step in the DLM FSV model

    Simulate a single step in the DLM FSV model

    time

    the time of the next observation

    x

    the state of the DLM

    a

    the state of the factor (latent state of the time varying variance)

    dlm

    the DLM model to use for the evolution

    p

    the parameters of the DLM and FSV Model

    returns

    the next simulated value

  30. def simulate(dlm: Dlm, p: DlmFsvParameters): Process[(Data, DenseVector[Double], Vector[Double])]

    Simulate from a DLM Factor Stochastic Volatility Model

    Simulate from a DLM Factor Stochastic Volatility Model

    dlm

    the dlm model

    p

    dlm fsv model parameters

    returns

    a vector of observations

  31. def stepOu(priorBeta: Gaussian, priorSigmaEta: InverseGamma, priorPhi: Beta, priorMu: Gaussian, priorSigma: InverseGamma, priorW: InverseGamma, observations: Vector[Data], dlm: Dlm, p: Int, k: Int)(s: State): Rand[State]
  32. def summariseInterpolation(obs: Vector[Vector[(Double, Option[Double])]], q: Double): Vector[(Double, Double, Double, Double)]

    Calculate the mean and intervals of a single observation

    Calculate the mean and intervals of a single observation

    obs

    a vector of vector of observations

    q

    the quantile to sample for the credible intervals

    returns

    a vector containing the time, mean, upper and lower credible intervals

  33. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  34. def toString(): String
    Definition Classes
    AnyRef → Any
  35. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped