object Dlm extends Serializable
A DLM with a p-vector of observations y_t = F_t x_t + v_t, v_t ~ N(0, V) x_t = F_t x_{t-1} + w_t, w_t ~ N(0, W)
- Alphabetic
- By Inheritance
- Dlm
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
angle(period: Int)(dt: Double): Double
Get the angle of the rotation for the seasonal model
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
autoregressive(phi: Double*): Dlm
Define a discrete time univariate autoregressive model
Define a discrete time univariate autoregressive model
- phi
a sequence of autoregressive parameters of length equal to the order of the autoregressive state
-
def
blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]
Build a block diagonal matrix by combining two matrices of the same size
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
composeModels(x: Dlm, y: Dlm): Dlm
Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
forecast(mod: Dlm, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Double, p: DlmParameters): Stream[(Double, DenseVector[Double], DenseMatrix[Double])]
Forecast a DLM from a state
Forecast a DLM from a state
- mod
a DLM
- mt
the posterior mean of the state at time t (start of forecast)
- ct
the posterior variance of the state at time t (start of forecast)
- time
the starting time of the forecast
- p
the parameters of the DLM
- returns
a Stream containing the time, forecast mean and variance
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def initialiseState(model: Dlm, params: DlmParameters): (Data, DenseVector[Double])
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def observation(model: Dlm, p: DlmParameters, x: DenseVector[Double], time: Double): Rand[DenseVector[Double]]
-
def
outerSumModel(x: Dlm, y: Dlm): Dlm
Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way
-
def
outerSumParameters(x: DlmParameters, y: DlmParameters): DlmParameters
Combine parameters of univariate models appropriately for a multivariate model
-
def
polynomial(order: Int): Dlm
A polynomial model
-
def
regression(x: Array[DenseVector[Double]]): Dlm
A first order regression model with intercept
A first order regression model with intercept
- x
an array of covariates
-
def
rotationMatrix(theta: Double): DenseMatrix[Double]
Build a 2 x 2 rotation matrix
-
def
seasonal(period: Int, harmonics: Int): Dlm
Create a seasonal model with fourier components in the system evolution matrix
Create a seasonal model with fourier components in the system evolution matrix
- period
the period of the seasonality
- harmonics
the number of harmonics in the seasonal model
- returns
a seasonal DLM model
-
def
seasonalG(period: Int, harmonics: Int)(dt: Double): DenseMatrix[Double]
Build the G matrix for the system evolution
- def simStep(model: Dlm, params: DlmParameters)(state: DenseVector[Double], time: Double, dt: Double): Rand[(Data, DenseVector[Double])]
- def simulateRegular(model: Dlm, params: DlmParameters, dt: Double): Process[(Data, DenseVector[Double])]
-
def
stepForecast(mod: Dlm, time: Double, dt: Double, mt: DenseVector[Double], ct: DenseMatrix[Double], p: DlmParameters): (Double, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])
Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process
Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process
- mod
a DLM specification
- time
the current time
- mt
the mean of the latent state at time t
- ct
the variance of the latent state at time t
- p
the parameters of the DLM
- def stepState(model: Dlm, p: DlmParameters, state: DenseVector[Double], dt: Double): Rand[DenseVector[Double]]
-
def
summariseForecast(interval: Double)(ft: DenseVector[Double], qt: DenseMatrix[Double]): List[List[Double]]
Summarise forecast
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )