Uses of Class
org.apache.commons.math.MathException

Packages that use MathException
org.apache.commons.math Common classes used throughout the commons-math library. 
org.apache.commons.math.analysis.interpolation Univariate real functions interpolation algorithms. 
org.apache.commons.math.distribution Implementations of common discrete and continuous distributions. 
org.apache.commons.math.estimation This package provided classes to solve estimation problems, it is deprecated since 2.0. 
org.apache.commons.math.fraction Fraction number type and fraction number formatting. 
org.apache.commons.math.geometry This package provides basic 3D geometry components. 
org.apache.commons.math.linear Linear algebra support. 
org.apache.commons.math.ode This package provides classes to solve Ordinary Differential Equations problems. 
org.apache.commons.math.ode.events This package provides classes to handle discrete events occurring during Ordinary Differential Equations integration. 
org.apache.commons.math.optimization This package provides common interfaces for the optimization algorithms provided in sub-packages. 
org.apache.commons.math.optimization.linear This package provides optimization algorithms for linear constrained problems. 
org.apache.commons.math.random Random number and random data generators. 
org.apache.commons.math.special Implementations of special functions such as Beta and Gamma. 
org.apache.commons.math.stat.correlation Correlations/Covariance computations. 
org.apache.commons.math.stat.inference Classes providing hypothesis testing and confidence interval construction. 
org.apache.commons.math.stat.regression Statistical routines involving multivariate data. 
org.apache.commons.math.util Convenience routines and common data structures used throughout the commons-math library. 
 

Uses of MathException in org.apache.commons.math
 

Subclasses of MathException in org.apache.commons.math
 class ArgumentOutsideDomainException
          Error thrown when a method is called with an out of bounds argument.
 class ConvergenceException
          Error thrown when a numerical computation can not be performed because the numerical result failed to converge to a finite value.
 class DimensionMismatchException
          Deprecated. in 2.2 (to be removed in 3.0). Please use its equivalent from package org.apache.commons.math.exception.
 class DuplicateSampleAbscissaException
          Exception thrown when a sample contains several entries at the same abscissa.
 class FunctionEvaluationException
          Exception thrown when an error occurs evaluating a function.
 class MathConfigurationException
          Signals a configuration problem with any of the factory methods.
 class MaxEvaluationsExceededException
          Error thrown when a numerical computation exceeds its allowed number of functions evaluations.
 class MaxIterationsExceededException
          Error thrown when a numerical computation exceeds its allowed number of iterations.
 

Uses of MathException in org.apache.commons.math.analysis.interpolation
 

Methods in org.apache.commons.math.analysis.interpolation that throw MathException
 MultivariateRealFunction MicrosphereInterpolator.interpolate(double[][] xval, double[] yval)
          Computes an interpolating function for the data set.
 MultivariateRealFunction MultivariateRealInterpolator.interpolate(double[][] xval, double[] yval)
          Computes an interpolating function for the data set.
 UnivariateRealFunction UnivariateRealInterpolator.interpolate(double[] xval, double[] yval)
          Computes an interpolating function for the data set.
 PolynomialSplineFunction LoessInterpolator.interpolate(double[] xval, double[] yval)
          Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with a SplineInterpolator on the resulting fit.
 PolynomialFunctionLagrangeForm NevilleInterpolator.interpolate(double[] x, double[] y)
          Computes an interpolating function for the data set.
 BivariateRealFunction SmoothingBicubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[][] zval)
          Deprecated. Computes an interpolating function for the data set.
 BivariateRealFunction BivariateRealGridInterpolator.interpolate(double[] xval, double[] yval, double[][] fval)
          Computes an interpolating function for the data set.
 BicubicSplineInterpolatingFunction BicubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[][] fval)
          Computes an interpolating function for the data set.
 BicubicSplineInterpolatingFunction SmoothingPolynomialBicubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[][] fval)
          Computes an interpolating function for the data set.
 TricubicSplineInterpolatingFunction TricubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)
          Computes an interpolating function for the data set.
 TrivariateRealFunction TrivariateRealGridInterpolator.interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)
          Computes an interpolating function for the data set.
 double[] LoessInterpolator.smooth(double[] xval, double[] yval)
          Compute a loess fit on the data at the original abscissae.
 double[] LoessInterpolator.smooth(double[] xval, double[] yval, double[] weights)
          Compute a weighted loess fit on the data at the original abscissae.
 

Constructors in org.apache.commons.math.analysis.interpolation that throw MathException
LoessInterpolator(double bandwidth, int robustnessIters)
          Constructs a new LoessInterpolator with given bandwidth and number of robustness iterations.
LoessInterpolator(double bandwidth, int robustnessIters, double accuracy)
          Constructs a new LoessInterpolator with given bandwidth, number of robustness iterations and accuracy.
 

Uses of MathException in org.apache.commons.math.distribution
 

Methods in org.apache.commons.math.distribution that throw MathException
 double GammaDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double ChiSquaredDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double TDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double FDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double Distribution.cumulativeProbability(double x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double AbstractIntegerDistribution.cumulativeProbability(double x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double ExponentialDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double BetaDistributionImpl.cumulativeProbability(double x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double NormalDistributionImpl.cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double Distribution.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double AbstractIntegerDistribution.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double BetaDistributionImpl.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double AbstractDistribution.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
abstract  double AbstractIntegerDistribution.cumulativeProbability(int x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double BinomialDistributionImpl.cumulativeProbability(int x)
          For this distribution, X, this method returns P(X ≤ x).
 double PoissonDistributionImpl.cumulativeProbability(int x)
          The probability distribution function P(X <= x) for a Poisson distribution.
 double PascalDistributionImpl.cumulativeProbability(int x)
          For this distribution, X, this method returns P(X ≤ x).
 double IntegerDistribution.cumulativeProbability(int x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double AbstractIntegerDistribution.cumulativeProbability(int x0, int x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double IntegerDistribution.cumulativeProbability(int x0, int x1)
          For this distribution, X, this method returns P(x0 ≤ X ≤ x1).
 double BetaDistribution.density(Double x)
          Return the probability density for a particular point.
 double HasDensity.density(P x)
          Deprecated. Compute the probability density function.
 double GammaDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double ChiSquaredDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double TDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double FDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double AbstractContinuousDistribution.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 int AbstractIntegerDistribution.inverseCumulativeProbability(double p)
          For a random variable X whose values are distributed according to this distribution, this method returns the largest x, such that P(X ≤ x) ≤ p.
 int BinomialDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤ p.
 int PascalDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤ p.
 double ExponentialDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 int IntegerDistribution.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the largest x such that P(X ≤ x) <= p.
 double ContinuousDistribution.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns x such that P(X < x) = p.
 double BetaDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double NormalDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double PoissonDistribution.normalApproximateProbability(int x)
          Calculates the Poisson distribution function using a normal approximation.
 double PoissonDistributionImpl.normalApproximateProbability(int x)
          Calculates the Poisson distribution function using a normal approximation.
 double AbstractContinuousDistribution.sample()
          Generates a random value sampled from this distribution.
 int AbstractIntegerDistribution.sample()
          Generates a random value sampled from this distribution.
 int PoissonDistributionImpl.sample()
          Generates a random value sampled from this distribution.
 double ExponentialDistributionImpl.sample()
          Generates a random value sampled from this distribution.
 double NormalDistributionImpl.sample()
          Generates a random value sampled from this distribution.
 double[] AbstractContinuousDistribution.sample(int sampleSize)
          Generates a random sample from the distribution.
 int[] AbstractIntegerDistribution.sample(int sampleSize)
          Generates a random sample from the distribution.
 

Uses of MathException in org.apache.commons.math.estimation
 

Subclasses of MathException in org.apache.commons.math.estimation
 class EstimationException
          Deprecated. as of 2.0, everything in package org.apache.commons.math.estimation has been deprecated and replaced by package org.apache.commons.math.optimization.general
 

Uses of MathException in org.apache.commons.math.fraction
 

Subclasses of MathException in org.apache.commons.math.fraction
 class FractionConversionException
          Error thrown when a double value cannot be converted to a fraction in the allowed number of iterations.
 

Uses of MathException in org.apache.commons.math.geometry
 

Subclasses of MathException in org.apache.commons.math.geometry
 class CardanEulerSingularityException
          This class represents exceptions thrown while extractiong Cardan or Euler angles from a rotation.
 class NotARotationMatrixException
          This class represents exceptions thrown while building rotations from matrices.
 

Uses of MathException in org.apache.commons.math.linear
 

Subclasses of MathException in org.apache.commons.math.linear
 class NotPositiveDefiniteMatrixException
          This class represents exceptions thrown when a matrix expected to be positive definite is not.
 class NotSymmetricMatrixException
          This class represents exceptions thrown when a matrix expected to be symmetric is not
 

Uses of MathException in org.apache.commons.math.ode
 

Subclasses of MathException in org.apache.commons.math.ode
 class DerivativeException
          This exception is made available to users to report the error conditions that are triggered while computing the differential equations.
 class IntegratorException
          This exception is made available to users to report the error conditions that are triggered during integration
 

Uses of MathException in org.apache.commons.math.ode.events
 

Subclasses of MathException in org.apache.commons.math.ode.events
 class EventException
          This exception is made available to users to report the error conditions that are triggered by EventHandler
 

Uses of MathException in org.apache.commons.math.optimization
 

Subclasses of MathException in org.apache.commons.math.optimization
 class OptimizationException
          Deprecated. in 2.2 (to be removed in 3.0).
 

Uses of MathException in org.apache.commons.math.optimization.linear
 

Subclasses of MathException in org.apache.commons.math.optimization.linear
 class NoFeasibleSolutionException
          This class represents exceptions thrown by optimizers when no solution fulfills the constraints.
 class UnboundedSolutionException
          This class represents exceptions thrown by optimizers when a solution escapes to infinity.
 

Uses of MathException in org.apache.commons.math.random
 

Methods in org.apache.commons.math.random that throw MathException
 double RandomDataImpl.nextBeta(double alpha, double beta)
          Generates a random value from the Beta Distribution.
 int RandomDataImpl.nextBinomial(int numberOfTrials, double probabilityOfSuccess)
          Generates a random value from the Binomial Distribution.
 double RandomDataImpl.nextCauchy(double median, double scale)
          Generates a random value from the Cauchy Distribution.
 double RandomDataImpl.nextChiSquare(double df)
          Generates a random value from the ChiSquare Distribution.
 double RandomDataImpl.nextF(double numeratorDf, double denominatorDf)
          Generates a random value from the F Distribution.
 double RandomDataImpl.nextGamma(double shape, double scale)
          Generates a random value from the Gamma Distribution.
 int RandomDataImpl.nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
          Generates a random value from the Hypergeometric Distribution.
 double RandomDataImpl.nextInversionDeviate(ContinuousDistribution distribution)
          Generate a random deviate from the given distribution using the inversion method.
 int RandomDataImpl.nextInversionDeviate(IntegerDistribution distribution)
          Generate a random deviate from the given distribution using the inversion method.
 int RandomDataImpl.nextPascal(int r, double p)
          Generates a random value from the Pascal Distribution.
 double RandomDataImpl.nextT(double df)
          Generates a random value from the T Distribution.
 double RandomDataImpl.nextWeibull(double shape, double scale)
          Generates a random value from the Weibull Distribution.
 int RandomDataImpl.nextZipf(int numberOfElements, double exponent)
          Generates a random value from the Zipf Distribution.
 

Uses of MathException in org.apache.commons.math.special
 

Methods in org.apache.commons.math.special that throw MathException
static double Erf.erf(double x)
          Returns the error function
static double Erf.erfc(double x)
          Returns the complementary error function
static double Beta.regularizedBeta(double x, double a, double b)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, double epsilon)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, double epsilon, int maxIterations)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, int maxIterations)
          Returns the regularized beta function I(x, a, b).
static double Gamma.regularizedGammaP(double a, double x)
          Returns the regularized gamma function P(a, x).
static double Gamma.regularizedGammaP(double a, double x, double epsilon, int maxIterations)
          Returns the regularized gamma function P(a, x).
static double Gamma.regularizedGammaQ(double a, double x)
          Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
static double Gamma.regularizedGammaQ(double a, double x, double epsilon, int maxIterations)
          Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
 

Uses of MathException in org.apache.commons.math.stat.correlation
 

Methods in org.apache.commons.math.stat.correlation that throw MathException
 RealMatrix PearsonsCorrelation.getCorrelationPValues()
          Returns a matrix of p-values associated with the (two-sided) null hypothesis that the corresponding correlation coefficient is zero.
 

Uses of MathException in org.apache.commons.math.stat.inference
 

Methods in org.apache.commons.math.stat.inference that throw MathException
 double OneWayAnova.anovaFValue(Collection<double[]> categoryData)
          Computes the ANOVA F-value for a collection of double[] arrays.
 double OneWayAnovaImpl.anovaFValue(Collection<double[]> categoryData)
          Computes the ANOVA F-value for a collection of double[] arrays.
 double OneWayAnova.anovaPValue(Collection<double[]> categoryData)
          Computes the ANOVA P-value for a collection of double[] arrays.
 double OneWayAnovaImpl.anovaPValue(Collection<double[]> categoryData)
          Computes the ANOVA P-value for a collection of double[] arrays.
 boolean OneWayAnova.anovaTest(Collection<double[]> categoryData, double alpha)
          Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.
 boolean OneWayAnovaImpl.anovaTest(Collection<double[]> categoryData, double alpha)
          Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.
static double TestUtils.chiSquareTest(double[] expected, long[] observed)
           
 double ChiSquareTest.chiSquareTest(double[] expected, long[] observed)
          Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing the observed frequency counts to those in the expected array.
 double ChiSquareTestImpl.chiSquareTest(double[] expected, long[] observed)
          Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing the observed frequency counts to those in the expected array.
static boolean TestUtils.chiSquareTest(double[] expected, long[] observed, double alpha)
           
 boolean ChiSquareTest.chiSquareTest(double[] expected, long[] observed, double alpha)
          Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
 boolean ChiSquareTestImpl.chiSquareTest(double[] expected, long[] observed, double alpha)
          Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
static double TestUtils.chiSquareTest(long[][] counts)
           
 double ChiSquareTest.chiSquareTest(long[][] counts)
          Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
 double ChiSquareTestImpl.chiSquareTest(long[][] counts)
           
static boolean TestUtils.chiSquareTest(long[][] counts, double alpha)
           
 boolean ChiSquareTest.chiSquareTest(long[][] counts, double alpha)
          Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance level alpha.
 boolean ChiSquareTestImpl.chiSquareTest(long[][] counts, double alpha)
           
static double TestUtils.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
           
 double UnknownDistributionChiSquareTest.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
          Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts in observed1 and observed2.
 double ChiSquareTestImpl.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
           
static boolean TestUtils.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
           
 boolean UnknownDistributionChiSquareTest.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
          Performs a Chi-Square two sample test comparing two binned data sets.
 boolean ChiSquareTestImpl.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
           
static double TestUtils.homoscedasticTTest(double[] sample1, double[] sample2)
           
 double TTestImpl.homoscedasticTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
 double TTest.homoscedasticTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
static boolean TestUtils.homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
           
 boolean TTestImpl.homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
 boolean TTest.homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
protected  double TTestImpl.homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)
          Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.
static double TestUtils.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
           
 double TTestImpl.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
 double TTest.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
static double TestUtils.oneWayAnovaFValue(Collection<double[]> categoryData)
           
static double TestUtils.oneWayAnovaPValue(Collection<double[]> categoryData)
           
static boolean TestUtils.oneWayAnovaTest(Collection<double[]> categoryData, double alpha)
           
static double TestUtils.pairedT(double[] sample1, double[] sample2)
           
 double TTestImpl.pairedT(double[] sample1, double[] sample2)
          Computes a paired, 2-sample t-statistic based on the data in the input arrays.
 double TTest.pairedT(double[] sample1, double[] sample2)
          Computes a paired, 2-sample t-statistic based on the data in the input arrays.
static double TestUtils.pairedTTest(double[] sample1, double[] sample2)
           
 double TTestImpl.pairedTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
 double TTest.pairedTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
static boolean TestUtils.pairedTTest(double[] sample1, double[] sample2, double alpha)
           
 boolean TTestImpl.pairedTTest(double[] sample1, double[] sample2, double alpha)
          Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
 boolean TTest.pairedTTest(double[] sample1, double[] sample2, double alpha)
          Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
static double TestUtils.tTest(double[] sample1, double[] sample2)
           
 double TTestImpl.tTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
 double TTest.tTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
static boolean TestUtils.tTest(double[] sample1, double[] sample2, double alpha)
           
 boolean TTestImpl.tTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
 boolean TTest.tTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
static double TestUtils.tTest(double mu, double[] sample)
           
 double TTestImpl.tTest(double mu, double[] sample)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
 double TTest.tTest(double mu, double[] sample)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
static boolean TestUtils.tTest(double mu, double[] sample, double alpha)
           
 boolean TTestImpl.tTest(double mu, double[] sample, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
 boolean TTest.tTest(double mu, double[] sample, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
protected  double TTestImpl.tTest(double m, double mu, double v, double n)
          Computes p-value for 2-sided, 1-sample t-test.
protected  double TTestImpl.tTest(double m1, double m2, double v1, double v2, double n1, double n2)
          Computes p-value for 2-sided, 2-sample t-test.
static double TestUtils.tTest(double mu, StatisticalSummary sampleStats)
           
 double TTestImpl.tTest(double mu, StatisticalSummary sampleStats)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
 double TTest.tTest(double mu, StatisticalSummary sampleStats)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
static boolean TestUtils.tTest(double mu, StatisticalSummary sampleStats, double alpha)
           
 boolean TTestImpl.tTest(double mu, StatisticalSummary sampleStats, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
 boolean TTest.tTest(double mu, StatisticalSummary sampleStats, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
static double TestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
           
 double TTestImpl.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
 double TTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
static boolean TestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
           
 boolean TTestImpl.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
 boolean TTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
 

Uses of MathException in org.apache.commons.math.stat.regression
 

Methods in org.apache.commons.math.stat.regression that throw MathException
 double SimpleRegression.getSignificance()
          Returns the significance level of the slope (equiv) correlation.
 double SimpleRegression.getSlopeConfidenceInterval()
          Returns the half-width of a 95% confidence interval for the slope estimate.
 double SimpleRegression.getSlopeConfidenceInterval(double alpha)
          Returns the half-width of a (100-100*alpha)% confidence interval for the slope estimate.
 

Uses of MathException in org.apache.commons.math.util
 

Methods in org.apache.commons.math.util that throw MathException
 double ContinuedFraction.evaluate(double x)
          Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, double epsilon)
          Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, double epsilon, int maxIterations)
           Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, int maxIterations)
          Evaluates the continued fraction at the value x.
 double NumberTransformer.transform(Object o)
          Implementing this interface provides a facility to transform from Object to Double.
 double TransformerMap.transform(Object o)
          Attempts to transform the Object against the map of NumberTransformers.
 double DefaultTransformer.transform(Object o)
           
 



Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.